Apache Hudi异步Clustering部署操作的掌握

目录
  • 1. 摘要
  • 2. 介绍
  • 3. Clustering策略
    • 3.1 计划策略
    • 3.2 执行策略
    • 3.3 更新策略
  • 4. 异步Clustering
    • 4.1 HoodieClusteringJob
    • 4.2 HoodieDeltaStreamer
    • 4.3 Spark Structured Streaming
  • 5. 总结和未来工作

1. 摘要

在之前的一篇博客中,我们介绍了Clustering(聚簇)的表服务来重新组织数据来提供更好的查询性能,而不用降低摄取速度,并且我们已经知道如何部署同步Clustering,本篇博客中,我们将讨论近期社区做的一些改进以及如何通过HoodieClusteringJobDeltaStreamer工具来部署异步Clustering。

2. 介绍

通常讲,Clustering根据可配置的策略创建一个计划,根据特定规则对符合条件的文件进行分组,然后执行该计划。Hudi支持并发写入,并在多个表服务之间提供快照隔离,从而允许写入程序在后台运行Clustering时继续摄取。有关Clustering的体系结构的更详细概述请查看上一篇博文。

3. Clustering策略

如前所述Clustering计划和执行取决于可插拔的配置策略。这些策略大致可分为三类:计划策略、执行策略和更新策略。

3.1 计划策略

该策略在创建Clustering计划时发挥作用。它有助于决定应该对哪些文件组进行Clustering。让我们看一下Hudi提供的不同计划策略。请注意,使用此配置可以轻松地插拔这些策略。

  • SparkSizeBasedClusteringPlanStrategy:根据基本文件的小文件限制选择文件切片并创建Clustering组,最大大小为每个组允许的最大文件大小。可以使用此配置指定最大大小。此策略对于将中等大小的文件合并成大文件非常有用,以减少跨冷分区分布的大量文件。
  • SparkRecentDaysClusteringPlanStrategy:根据以前的N天分区创建一个计划,将这些分区中的小文件片进行Clustering,这是默认策略,当工作负载是可预测的并且数据是按时间划分时,它可能很有用。
  • SparkSelectedPartitionsClusteringPlanStrategy:如果只想对某个范围内的特定分区进行Clustering,那么无论这些分区是新分区还是旧分区,此策略都很有用,要使用此策略,还需要在下面设置两个配置(包括开始和结束分区):
hoodie.clustering.plan.strategy.cluster.begin.partition
hoodie.clustering.plan.strategy.cluster.end.partition

注意:所有策略都是分区感知的,后两种策略仍然受到第一种策略的大小限制的约束。

3.2 执行策略

在计划阶段构建Clustering组后,Hudi主要根据排序列和大小为每个组应用执行策略,可以使用此配置指定策略。

SparkSortAndSizeExecutionStrategy是默认策略。使用此配置进行Clustering时,用户可以指定数据排序列。除此之外我们还可以为Clustering产生的Parquet文件设置最大文件大小。该策略使用bulk_insert将数据写入新文件,在这种情况下,Hudi隐式使用一个分区器,该分区器根据指定列进行排序。通过这种策略改变数据布局,不仅提高了查询性能,而且自动平衡了重写开销。

现在该策略可以作为单个Spark作业或多个作业执行,具体取决于在计划阶段创建的Clustering组的数量。默认情况下Hudi将提交多个Spark作业并合并结果。如果要强制Hudi使用单Spark作业,请将执行策略类配置设置为SingleSparkJobExecutionStrategy

3.3 更新策略

目前只能为未接收任何并发更新的表/分区调度Clustering。默认情况下更新策略的配置设置为SparkRejectUpdateStrategy。如果某个文件组在Clustering期间有更新,则它将拒绝更新并引发异常。然而在某些用例中,更新是非常稀疏的,并且不涉及大多数文件组。简单拒绝更新的默认策略似乎不公平。在这种用例中用户可以将配置设置为SparkAllowUpdateStregy

我们讨论了关键策略配置,下面列出了与Clustering相关的所有其他配置。在此列表中一些非常有用的配置包括:

配置项 解释 默认值
hoodie.clustering.async.enabled 启用在表上的异步运行Clustering服务。 false
hoodie.clustering.async.max.commits 通过指定应触发多少次提交来控制异步Clustering的频率。 4
hoodie.clustering.preserve.commit.metadata 重写数据时保留现有的_hoodie_commit_time。这意味着用户可以在Clustering数据上运行增量查询,而不会产生任何副作用。 false

4. 异步Clustering

之前我们已经了解了用户如何设置同步Clustering。此外用户可以利用HoodiecClusteringJob设置两步异步Clustering。

4.1 HoodieClusteringJob

随着Hudi版本0.9.0的发布,我们可以在同一步骤中调度和执行Clustering。我们只需要指定-mode-m选项。有如下三种模式:

schedule(调度):制定一个Clustering计划。这提供了一个可以在执行模式下传递的instant

execute(执行):在给定的instant执行Clustering计划,这意味着这里需要instant

scheduleAndExecute(调度并执行):首先制定Clustering计划并立即执行该计划。

请注意要在原始写入程序仍在运行时运行作业请启用多写入:

hoodie.write.concurrency.mode=optimistic_concurrency_control
hoodie.write.lock.provider=org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvider

使用spark submit命令提交HoodieClusteringJob示例如下:

spark-submit \
--class org.apache.hudi.utilities.HoodieClusteringJob \
/path/to/hudi-utilities-bundle/target/hudi-utilities-bundle_2.12-0.9.0-SNAPSHOT.jar \
--props /path/to/config/clusteringjob.properties \
--mode scheduleAndExecute \
--base-path /path/to/hudi_table/basePath \
--table-name hudi_table_schedule_clustering \
--spark-memory 1g

clusteringjob.properties配置文件示例如下

hoodie.clustering.async.enabled=true
hoodie.clustering.async.max.commits=4
hoodie.clustering.plan.strategy.target.file.max.bytes=1073741824
hoodie.clustering.plan.strategy.small.file.limit=629145600
hoodie.clustering.execution.strategy.class=org.apache.hudi.client.clustering.run.strategy.SparkSortAndSizeExecutionStrategy
hoodie.clustering.plan.strategy.sort.columns=column1,column2

4.2 HoodieDeltaStreamer

接着看下如何使用HudiDeltaStreamer。现在我们可以使用DeltaStreamer触发异步Clustering。只需将hoodie.clustering.async.enabled为true,并在属性文件中指定其他Clustering配置,在启动Deltastreamer时可以将其位置设为-props(与HoodieClusteringJob配置类似)。

使用spark submit命令提交HoodieDeltaStreamer示例如下:

spark-submit \
--class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer \
/path/to/hudi-utilities-bundle/target/hudi-utilities-bundle_2.12-0.9.0-SNAPSHOT.jar \
--props /path/to/config/clustering_kafka.properties \
--schemaprovider-class org.apache.hudi.utilities.schema.SchemaRegistryProvider \
--source-class org.apache.hudi.utilities.sources.AvroKafkaSource \
--source-ordering-field impresssiontime \
--table-type COPY_ON_WRITE \
--target-base-path /path/to/hudi_table/basePath \
--target-table impressions_cow_cluster \
--op INSERT \
--hoodie-conf hoodie.clustering.async.enabled=true \
--continuous

4.3 Spark Structured Streaming

我们还可以使用Spark结构化流启用异步Clustering,如下所示。

val commonOpts = Map(
   "hoodie.insert.shuffle.parallelism" -> "4",
   "hoodie.upsert.shuffle.parallelism" -> "4",
   DataSourceWriteOptions.RECORDKEY_FIELD.key -> "_row_key",
   DataSourceWriteOptions.PARTITIONPATH_FIELD.key -> "partition",
   DataSourceWriteOptions.PRECOMBINE_FIELD.key -> "timestamp",
   HoodieWriteConfig.TBL_NAME.key -> "hoodie_test"
)
def getAsyncClusteringOpts(isAsyncClustering: String,
                           clusteringNumCommit: String,
                           executionStrategy: String):Map[String, String] = {
   commonOpts + (DataSourceWriteOptions.ASYNC_CLUSTERING_ENABLE.key -> isAsyncClustering,
           HoodieClusteringConfig.ASYNC_CLUSTERING_MAX_COMMITS.key -> clusteringNumCommit,
           HoodieClusteringConfig.EXECUTION_STRATEGY_CLASS_NAME.key -> executionStrategy
   )
}
def initStreamingWriteFuture(hudiOptions: Map[String, String]): Future[Unit] = {
   val streamingInput = // define the source of streaming
   Future {
      println("streaming starting")
      streamingInput
              .writeStream
              .format("org.apache.hudi")
              .options(hudiOptions)
              .option("checkpointLocation", basePath + "/checkpoint")
              .mode(Append)
              .start()
              .awaitTermination(10000)
      println("streaming ends")
   }
}
def structuredStreamingWithClustering(): Unit = {
   val df = //generate data frame
   val hudiOptions = getClusteringOpts("true", "1", "org.apache.hudi.client.clustering.run.strategy.SparkSortAndSizeExecutionStrategy")
   val f1 = initStreamingWriteFuture(hudiOptions)
   Await.result(f1, Duration.Inf)
}

5. 总结和未来工作

在这篇文章中,我们讨论了不同的Clustering策略以及如何设置异步Clustering。未来的工作包括:

Clustering支持更新。

支持Clustering的CLI工具。

另外Flink支持Clustering已经有相应Pull Request,有兴趣的小伙伴可以关注该PR。

以上就是Apache Hudi异步Clustering部署操作的掌握的详细内容,更多关于Apache Hudi异步Clustering部署的资料请关注我们其它相关文章!

(0)

相关推荐

  • OnZoom基于Apache Hudi的一体架构实践解析

    1. 背景 OnZoom是Zoom新产品,是基于Zoom Meeting的一个独一无二的在线活动平台和市场.作为Zoom统一通信平台的延伸,OnZoom是一个综合性解决方案,为付费的Zoom用户提供创建.主持和盈利的活动,如健身课.音乐会.站立表演或即兴表演,以及Zoom会议平台上的音乐课程. 在OnZoom data platform中,source数据主要分为MySQL DB数据和Log数据. 其中Kafka数据通过Spark Streaming job实时消费,MySQL数据通过Spark

  • Apache Hudi性能提升三倍的查询优化

    目录 1. 背景 2. 设置 3. 测试 4. 结果 5. 总结 从 Hudi 0.10.0版本开始,我们很高兴推出在数据库领域中称为 Z-Order 和 Hilbert 空间填充曲线的高级数据布局优化技术的支持. 1. 背景 Amazon EMR 团队最近发表了一篇很不错的文章展示了对数据进行聚簇是如何提高查询性能的,为了更好地了解发生了什么以及它与空间填充曲线的关系,让我们仔细研究该文章的设置. 文章中比较了 2 个 Apache Hudi 表(均来自 Amazon Reviews 数据集)

  • Apache Hudi结合Flink的亿级数据入湖实践解析

    目录 1. 实时数据落地需求演进 2. 基于Spark+Hudi的实时数据落地应用实践 3. 基于Flink自定义实时数据落地实践 4. 基于Flink + Hudi的落地数据实践 5. 后续应用规划及展望 5.1 取代离线报表,提高报表实时性及稳定性 5.2 完善监控体系,提升落数据任务稳定性 5.3 落数据中间过程可视化探索 本次分享分为5个部分介绍Apache Hudi的应用与实践 1. 实时数据落地需求演进 实时平台上线后,主要需求是开发实时报表,即抽取各类数据源做实时etl后,吐出实时

  • Apache Hudi数据布局黑科技降低一半查询时间

    目录 1. 背景 2. Clustering架构 2.1 调度Clustering 2.2 运行Clustering 2.3 Clustering配置 3. 表查询性能 3.1 进行Clustering之前 3.2 进行Clustering之后 4. 总结 1. 背景 Apache Hudi将流处理带到大数据,相比传统批处理效率高一个数量级,提供了更新鲜的数据.在数据湖/仓库中,需要在摄取速度和查询性能之间进行权衡,数据摄取通常更喜欢小文件以改善并行性并使数据尽快可用于查询,但很多小文件会导致查

  • Apache Hudi灵活的Payload机制硬核解析

    1.摘要 Apache Hudi 的Payload是一种可扩展的数据处理机制,通过不同的Payload我们可以实现复杂场景的定制化数据写入方式,大大增加了数据处理的灵活性.Hudi Payload在写入和读取Hudi表时对数据进行去重.过滤.合并等操作的工具类,通过使用参数 "hoodie.datasource.write.payload.class"指定我们需要使用的Payload class.本文我们会深入探讨Hudi Payload的机制和不同Payload的区别及使用场景. 2

  • Apache Hudi基于华米科技应用湖仓一体化改造

    目录 1. 应用背景及痛点介绍 2. 技术方案选型 3. 问题与解决方案 3.1.增量数据字段对齐问题 3.2 全球存储兼容性问题 3.3 云主机时区统一问题 3.4 升级新版本问题 3.5 多分区Upsert性能问题 3.6 数据特性适应问题 4. 上线收益 4.1 成本方面 4.2 效率方面 4.3 稳定性层面 4.4 查询性能层面 5. 总结与展望 1. 应用背景及痛点介绍 华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技术.在华米科技,数据建设主要围绕两类数据:设备数据和

  • 深入解析Apache Hudi内核文件标记机制

    目录 1. 摘要 2. 为何引入Markers机制 3. 现有的直接标记机制及其局限性 4. 基于时间线服务器的标记机制提高写入性能 5. 标记相关的写入选项 6. 性能 7. 总结 1. 摘要 Hudi 支持在写入时自动清理未成功提交的数据.Apache Hudi 在写入时引入标记机制来有效跟踪写入存储的数据文件. 在本博客中,我们将深入探讨现有直接标记文件机制的设计,并解释了其在云存储(如 AWS S3.Aliyun OSS)上针对非常大批量写入的性能问题. 并且演示如何通过引入基于时间轴服

  • Apache教程Hudi与Hive集成手册

    目录 1. Hudi表对应的Hive外部表介绍 2. Hive对Hudi的集成 3. 创建Hudi表对应的hive外部表 4. 查询Hudi表对应的Hive外部表 4.1 操作前提 4.2 COW类型Hudi表的查询 4.2.1 COW表实时视图查询 4.2.2 COW表增量查询 4.3 MOR类型Hudi表的查询 4.3.1 MOR表读优化视图 4.3.2 MOR表实时视图 4.3.3 MOR表增量查询 5. Hive侧源码修改 1. Hudi表对应的Hive外部表介绍 Hudi源表对应一份H

  • Apache Hudi的多版本清理服务彻底讲解

    目录 1. 回收空间以控制存储成本 2. 问题描述 3. 深入了解 Hudi清理服务 4. 清理服务 5. 例子 6. 配置 7. 运行命令 8. 未来计划 Apache Hudi提供了MVCC并发模型,保证写入端和读取端之间快照级别隔离.在本篇博客中我们将介绍如何配置来管理多个文件版本,此外还将讨论用户可使用的清理机制,以了解如何维护所需数量的旧文件版本,以使长时间运行的读取端不会失败. 1. 回收空间以控制存储成本 Hudi 提供不同的表管理服务来管理数据湖上表的数据,其中一项服务称为Cle

  • Vertica集成Apache Hudi重磅使用指南

    目录 1. 摘要 2. Apache Hudi介绍 3. 环境准备 4. Vertica和Apache Hudi集成 4.1 在 Apache Spark 上配置 Apache Hudi 和 AWS S3 4.2 配置 Vertica 和 Apache HUDI 集成 4.3 如何让 Vertica 查看更改的数据 4.3.1 写入数据 4.3.2 更新数据 4.3.3 创建和查看数据的历史快照 1. 摘要 本文演示了使用外部表集成 Vertica 和 Apache Hudi. 在演示中我们使用

随机推荐