使用Tensorflow实现可视化中间层和卷积层

为了查看网络训练的效果或者便于调参、更改结构等,我们常常将训练网络过程中的loss、accurcy等参数。

除此之外,有时我们也想要查看训练好的网络中间层输出和卷积核上面表达了什么内容,这可以帮助我们思考CNN的内在机制、调整网络结构或者把这些可视化内容贴在论文当中辅助说明训练的效果等。

中间层和卷积核的可视化有多种方法,整理如下:

1. 以矩阵(matrix)格式手动输出图像:

用简单的LeNet网络训练MNIST数据集作为示例:

x = tf.placeholder(tf.float32, [None, 784]) 

x_image = tf.reshape(x, [-1,28,28,1])
W_conv1 = weight_variable([5, 5, 1, 32]) # 第一个卷积层的32个卷积核
b_conv1 = bias_variable([32])
# 第一个卷积层:
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1)  # 第一个池化层

训练结束后,第一个卷积层共有32个5*5大小的卷积核:W_conv1,要可视化第10个卷积核:

from PIL import Image
import numpy as np
#from mnist_try001 import W_conv1

img1 = (W_conv1.eval()) # 将张量转换为numpy数组
W_conv1_10 = img1[:,:,:,9] 

W_conv1_10 = np.asmatrix(W_conv1_10) # 将数组转换为矩阵格式
W_conv1_10_visual = Image.fromarray(W_conv1_10 * 255.0 / W_conv1_10.max()) # 像素值归一化,Image.fromarray方法的输入范围是[0~255]
W_conv1_10_visual.show()

2. 通过反卷积方式输出中间层和卷积核图像:

import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

x = tf.placeholder(tf.float32, [None, 784])
mnist = input_data.read_data_sets('/TensorflowCode/MNIST_data', one_hot=True)

h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2) #14*14*64
# 可视化第二层输出的图像
input_image = mnist.train.images[100] # 输入一幅指定图像,mnist.train.images[100]尺寸为[784,],即1维:[1,784]
conv2 = sess.run(h_conv2, feed_dict={x:input_image}) # [64, 14, 14 ,1] 若前面网络中加入了dropout,这里的feed_dict中不要忘记加上keep_prob: 0.5
conv2 = sess.run(tf.reshape(conv2 , [64, 1, 14, 14]))
conv2 = np.sum(conv2,axis = 0) # 对中间层图像各通道求和,作为输出图像
h_conv1 = np.asmatrix(h_conv1) # 将conv2数组转换成矩阵格式
h_conv1 = Image.fromarray(h_conv1 * 255.0 / h_conv1.max()) # 矩阵数值归一化
h_conv1.show() # 输出14*14的灰度图像

可视化卷积核和上面的方法完全一样,把h_conv2改成卷积核就可以了(如W_conv1_10),可以同是输出多个卷积核。

中间层图像如下:(已经完全看不出是数字了)

或者用 matplotlib.pyplot代替上面的Image方法,可以直接输出彩色图像:

# 输出第一层的32个卷积核(5×5*32)
import matplotlib.pyplot as plt

input_image = mnist.train.images[100]
W_conv1 = sess.run(W_conv1, feed_dict={x:input_image})
W_conv1 = sess.run(tf.reshape(conv1_16, [32, 1, 5, 5]))
fig1,ax1 = plt.subplots(nrows=1, ncols=32, figsize = (32,1))
for i in range(32):
  ax1[i].imshow( W_conv1[i][0])
plt.title('W_conv1 32×5×5')
plt.show()

以上这篇使用Tensorflow实现可视化中间层和卷积层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Tensorflow的可视化工具Tensorboard的初步使用详解

    当使用Tensorflow训练大量深层的神经网络时,我们希望去跟踪神经网络的整个训练过程中的信息,比如迭代的过程中每一层参数是如何变化与分布的,比如每次循环参数更新后模型在测试集与训练集上的准确率是如何的,比如损失值的变化情况,等等.如果能在训练的过程中将一些信息加以记录并可视化得表现出来,是不是对我们探索模型有更深的帮助与理解呢? Tensorflow官方推出了可视化工具Tensorboard,可以帮助我们实现以上功能,它可以将模型训练过程中的各种数据汇总起来存在自定义的路径与日志文件中,然后

  • 通过python的matplotlib包将Tensorflow数据进行可视化的方法

    使用matplotlib中的一些函数将tensorflow中的数据可视化,更加便于分析 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) bi

  • 对Tensorflow中权值和feature map的可视化详解

    前言 Tensorflow中可以使用tensorboard这个强大的工具对计算图.loss.网络参数等进行可视化.本文并不涉及对tensorboard使用的介绍,而是旨在说明如何通过代码对网络权值和feature map做更灵活的处理.显示和存储.本文的相关代码主要参考了github上的一个小项目,但是对其进行了改进. 原项目地址为(https://github.com/grishasergei/conviz). 本文将从以下两个方面进行介绍: 卷积知识补充 网络权值和feature map的可

  • 使用Tensorflow实现可视化中间层和卷积层

    为了查看网络训练的效果或者便于调参.更改结构等,我们常常将训练网络过程中的loss.accurcy等参数. 除此之外,有时我们也想要查看训练好的网络中间层输出和卷积核上面表达了什么内容,这可以帮助我们思考CNN的内在机制.调整网络结构或者把这些可视化内容贴在论文当中辅助说明训练的效果等. 中间层和卷积核的可视化有多种方法,整理如下: 1. 以矩阵(matrix)格式手动输出图像: 用简单的LeNet网络训练MNIST数据集作为示例: x = tf.placeholder(tf.float32,

  • python深度学习tensorflow卷积层示例教程

    目录 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d 二.1.0版本中的卷积函数:tf.layers.conv2d 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d 在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. conv2d( input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None ) 该函数定义在tensorflow/pytho

  • 使用pytorch实现可视化中间层的结果

    摘要 一直比较想知道图片经过卷积之后中间层的结果,于是使用pytorch写了一个脚本查看,先看效果 这是原图,随便从网上下载的一张大概224*224大小的图片,如下 网络介绍 我们使用的VGG16,包含RULE层总共有30层可以可视化的结果,我们把这30层分别保存在30个文件夹中,每个文件中根据特征的大小保存了64~128张图片 结果如下: 原图大小为224224,经过第一层后大小为64224*224,下面是第一层可视化的结果,总共有64张这样的图片: 下面看看第六层的结果 这层的输出大小是 1

  • Pytorch卷积层手动初始化权值的实例

    由于研究关系需要自己手动给卷积层初始化权值,但是好像博客上提到的相关文章比较少(大部分都只提到使用nn.init里的按照一定分布初始化方法),自己参考了下Pytorch的官方文档,发现有两种方法吧. 所以mark下. import torch import torch.nn as nn import torch.optim as optim import numpy as np # 第一一个卷积层,我们可以看到它的权值是随机初始化的 w=torch.nn.Conv2d(2,2,3,padding

  • pytorch神经网络之卷积层与全连接层参数的设置方法

    当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错. 后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个. 全连接层的input_features是多少.首先来看一下这个简单的网络.这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢? 请看下文详解. class AlexN

  • Pytorch之卷积层的使用详解

    1.简介(torch.nn下的) 卷积层主要使用的有3类,用于处理不同维度的数据 参数 Parameters: in_channels(int) – 输入信号的通道 out_channels(int) – 卷积产生的通道 kerner_size(int or tuple) - 卷积核的尺寸 stride(int or tuple, optional) - 卷积步长 padding (int or tuple, optional)- 输入的每一条边补充0的层数 dilation(int or tu

  • TensorFlow tf.nn.conv2d实现卷积的方式

    实验环境:tensorflow版本1.2.0,python2.7 介绍 惯例先展示函数: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关的一共五个参数: input: 指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[

  • Pytorch 实现冻结指定卷积层的参数

    python代码 for i, para in enumerate(self._net.module.features.parameters()): if i < 16: para.requires_grad = False else: para.requires_grad = True # Solver. # self._solver = torch.optim.SGD( # self._net.parameters(), lr=self._options['base_lr'], # mome

  • keras中的卷积层&池化层的用法

    卷积层 创建卷积层 首先导入keras中的模块 from keras.layers import Conv2D 卷积层的格式及参数: Conv2D(filters, kernel_size, strides, padding, activation='relu', input_shape) filters: 过滤器数量 kernel_size:指定卷积窗口的高和宽的数字 strides: 卷积stride,如果不指定任何值,则strides设为1 padding: 选项包括'valid'和'sa

随机推荐