tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度方式

在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作。比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可实现,反过来用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三维去掉。

tf.expand_dims()

tf.squeeze()

tf.expand_dims()

tf.expand_dims(input, axis=None, name=None, dim=None)

在第axis位置增加一个维度.

给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。

如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。

例子

# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

tf.squeeze()

tf.squeeze(input, axis=None, name=None, squeeze_dims=None)

直接上例子

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
 shape(squeeze(t)) ==> [2, 3]
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
 shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

以上这篇tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow用expand_dim()来增加维度的方法

    TensorFlow中,想要维度增加一维,可以使用tf.expand_dims(input, dim, name=None)函数.当然,我们常用tf.reshape(input, shape=[])也可以达到相同效果,但是有些时候在构建图的过程中,placeholder没有被feed具体的值,这时就会包下面的错误:TypeError: Expected binary or unicode string, got 1 在这种情况下,我们就可以考虑使用expand_dims来将维度加1.比如我自己代

  • PyTorch中Tensor的维度变换实现

    对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看. 维度查看:torch.Tensor.size() 查看当前 tensor 的维度 举个例子: >>> import torch >>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]]) >>> a.size() torch.Size

  • tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度方式

    在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作.比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可实现,反过来用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三维去掉. tf.expan

  • Pytorch 扩展Tensor维度、压缩Tensor维度的方法

    1. 扩展Tensor维度 相信刚接触Pytorch的宝宝们,会遇到这样一个问题,输入的数据维度和实验需要维度不一致,输入的可能是2维数据或3维数据,实验需要用到3维或4维数据,那么我们需要扩展这个维度.其实特别简单,只要对数据加一个扩展维度方法就可以了. 1.1torch.unsqueeze(self: Tensor, dim: _int) torch.unsqueeze(self: Tensor, dim: _int) 参数说明:self:输入的tensor数据,dim:要对哪个维度扩展就输

  • php如何利用pecl安装mongodb扩展详解

    前言 本文主要给大家介绍了关于php利用pecl安装mongodb扩展的相关内容,下面话不多说了,来一起看看详细的介绍吧 环境说明 php7 centos7 mongodb4.0.5 默认情况下,php并没有安装mongodb扩展,会报Class 'MongoDB\Driver\Query' not found错误. pecl安装扩展 通过pecl可以很方便地安装扩展 注意:如果安装了多个版本的php,需要进行相应版本的pecl目录,如: ➜ bin pwd /usr/local/php7.1/

  • TensorFlow利用saver保存和提取参数的实例

    在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件. saver.save(sess, FLAGS.train_dir, global_step=step) global_step是训练的第几步 保存参数: import tensorflow as tf W = tf.Variable([[1, 2, 3]], dtype=tf.float32) b = tf.Variable([[1]], dtype=tf.flo

  • 利用R语言解压与压缩.tar.gz.zip等格式文件

    目录 .zip .tar.gz .gz 与 .bz2 1) 直接解压 2) 直接读取 参考 最近尝试用 R 对一些文件进行批量的解压与压缩,这里记录一些常用的解压与压缩的方法. 由于解压与压缩是对称的两种方法,这里我们着重以对文件的解压为例,分不同的格式进行讲解. .zip 压缩:zip() 解压:unzip() 若要压缩文件,就直接在 zip() 函数的第一个参数里面输入压缩后的文件名,第二个参数输入压缩前的文件名. 而解压文件就更简单了,直接利用 unzip() 里面加上需要解压的文件名称即

  • 利用C#开发浏览器扩展的全过程记录

    目录 Intro BlazorBrowserExtension Get Started Structure Further More References Intro 前段时间听了 Justin 大佬分享的 Blazor 开发浏览器扩展,觉得很不错,C# 可以做更多有趣的事情了, 很多需要在服务器端做的事情可能就可以在客户端里实现了,而且高度可以复用已有的 C# 代码,而且在浏览器里做很多有趣的事情,所以想写一篇文章和大家分享一下,让大家知道 C# 也是可以开发浏览器扩展的 BlazorBrow

  • python神经网络tensorflow利用训练好的模型进行预测

    目录 学习前言 载入模型思路 实现代码 学习前言 在神经网络学习中slim常用函数与如何训练.保存模型文章里已经讲述了如何使用slim训练出来一个模型,这篇文章将会讲述如何预测. 载入模型思路 载入模型的过程主要分为以下四步: 1.建立会话Session: 2.将img_input的placeholder传入网络,建立网络结构: 3.初始化所有变量: 4.利用saver对象restore载入所有参数. 这里要注意的重点是,在利用saver对象restore载入所有参数之前,必须要建立网络结构,因

  • 利用Qt实现可扩展对话框的示例代码

    目录 一.项目介绍 二.项目基本配置 三.UI界面设计 四.主程序实现 4.1 dialog.h头文件 4.2 dialog.cpp源文件 五.效果演示 可扩展对话框通常用于用户对界面有不同要求的场合.通常情况下,只出现在基本对话窗体:当供高级用户使用或需要更多信息时,可通过某种方式的切换显示完整对话窗体(扩展窗体).切换的工作通常由一个按钮完成. 一.项目介绍 实现一个简单填写资料的对话框.通常情况下,只需要填写姓名和性别.若有特殊需要,还需要填写更多信息时,则切换至完整对话窗体,完整对话窗体

  • 详解利用上下文管理器扩展Python计时器

    目录 一个 Python 定时器上下文管理器 了解 Python 中的上下文管理器 理解并使用 contextlib 创建 Python 计时器上下文管理器 使用 Python 定时器上下文管理器 写在最后 上文中,我们一起学习了手把手教你实现一个 Python 计时器.本文中,云朵君将和大家一起了解什么是上下文管理器 和 Python 的 with 语句,以及如何完成自定义.然后扩展 Timer 以便它也可以用作上下文管理器.最后,使用 Timer 作为上下文管理器如何简化我们自己的代码. 上

  • tensorflow将图片保存为tfrecord和tfrecord的读取方式

    tensorflow官方提供了3种方法来读取数据: 预加载数据(preloaded data):在TensorFlow图中定义常量或变量来保存所有的数据,适用于数据量不太大的情况.填充数据(feeding):通过Python产生数据,然后再把数据填充到后端. 从文件读取数据(reading from file):从文件中直接读取,然后通过队列管理器从文件中读取数据. 本文主要介绍第三种方法,通过tfrecord文件来保存和读取数据,对于前两种读取数据的方式也会进行一个简单的介绍. 项目下载git

随机推荐