Python+OpenCV图像处理—— 色彩空间转换

一、色彩空间的转换

代码如下:

#色彩空间转换
import cv2 as cv
def color_space_demo(img):
  gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) #RGB转换为GRAY 这里的GRAY是单通道的
  cv.imshow("gray", gray)
  hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)   #RGB转换为HSV
  cv.imshow("hsv", hsv)
  yuv = cv.cvtColor(img, cv.COLOR_RGB2YUV)   #RGB转换为YUV
  cv.imshow("yuv",yuv)
  Ycrcb = cv.cvtColor(img, cv.COLOR_RGB2YCrCb) #RGB转换为YCrCb
  cv.imshow("Ycrcb", Ycrcb)
src = cv.imread('D:\imageload\example.png')
cv.namedWindow('first_image', cv.WINDOW_AUTOSIZE)
cv.imshow('first_image', src)
color_space_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行结果:

1.RGB就是指Red,Green和Blue,一副图像由这三个channel(通道)构成

2.Gray就是只有灰度值一个channel。

3.HSV即Hue(色调),Saturation(饱和度)和Value(亮度)三个channel

切记(纯属个人理解):

1.百度百科说,将原来的RGB(R,G,B)中的R,G,B统一按照一种转换关系用Gray替换,形成新的颜色RGB(Gray,Gray,Gray),用它替换原来的RGB(R,G,B)就是灰度图。

2.opencv里,COLOR_RGB2GRAY是将三通道RGB对象转换为单通道的灰度对象。

3.将单通道灰度对象转换为 RGB 时,生成的RGB对象的每个通道的值是灰度对象的灰度值。

RGB是为了让机器更好的显示图像,对于人类来说并不直观,HSV更为贴近我们的认知,所以通常我们在针对某种颜色做提取时会转换到HSV颜色空间里面来处理.

补注:

1.HSV如下图:

2.opencv里HSV色彩空间范围为: H:0-180  S: 0-255   V: 0-255

3.常见的色彩空间有RGB、HSV、HIS、YCrCb、YUV,其中最常用的是RGB、HSV、YUV,其中YUV就是YCrCb(详见百度百科)。其中YUV的“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。

二、利用inrange函数过滤视频中的颜色,实现对特定颜色的追踪

代码如下:

#视频特定颜色追踪
import cv2 as cv
import numpy as np
def extrace_object_demo():
  capture=cv.VideoCapture("E:/imageload/video_example.mp4")
  while True:
    ret, frame = capture.read()
    if ret == False:
      break
    hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)   #色彩空间由RGB转换为HSV
    lower_hsv = np.array([100, 43, 46])       #设置要过滤颜色的最小值
    upper_hsv = np.array([124, 255, 255])      #设置要过滤颜色的最大值
    mask = cv.inRange(hsv, lower_hsv, upper_hsv)  #调节图像颜色信息(H)、饱和度(S)、亮度(V)区间,选择蓝色区域
    cv.imshow("video",frame)
    cv.imshow("mask", mask)
    c = cv.waitKey(40)
    if c == 27:   #按键Esc的ASCII码为27
      break
extrace_object_demo()
cv.destroyAllWindows()

运行结果:

这里只放追踪蓝色部分的截图,仅供参考

注意:

1.Opencv的inRange函数:可实现二值化功能

函数原型:inRange(src,lowerb, upperb[, dst]) -> dst

  函数的参数意义:第一个参数为原数组,可以为单通道,多通道。第二个参数为下界,第三个参数为上界

例如:mask = cv2.inRange(hsv, lower_blue, upper_blue)

  第一个参数:hsv指的是原图(原始图像矩阵)

  第二个参数:lower_blue指的是图像中低于这个lower_blue的值,图像值变为255

  第三个参数:upper_blue指的是图像中高于这个upper_blue的值,图像值变为255 (255即代表黑色)

  而在lower_blue~upper_blue之间的值变成0 (0代表白色)

即:Opencv的inRange函数可提取特定颜色,使特定颜色变为白色,其他颜色变为黑色,这样就实现了二值化功能

2.HSV颜色对应的RGB分量范围表如下:(这里是三通道的)

三、通道的分离、合并以及某个通道值的修改

代码如下:

#通道的分离与合并以及某个通道值的修改
import cv2 as cv
src=cv.imread('E:\imageload\example.png')
cv.namedWindow('first_image', cv.WINDOW_AUTOSIZE)
cv.imshow('first_image', src)

#三通道分离形成单通道图片
b, g, r =cv.split(src)
cv.imshow("second_blue", b)
cv.imshow("second_green", g)
cv.imshow("second_red", r)
# 其中cv.imshow("second_red", r)可表示为r = cv2.split(src)[2]

#三个单通道合成一个三通道图片
src = cv.merge([b, g, r])
cv.imshow('changed_image', src)

#修改多通道里的某个通道的值
src[:, :, 2] = 0
cv.imshow('modify_image', src)

cv.waitKey(0)
cv.destroyAllWindows()

注意:

1.这里用到了opencv的split函数和merge函数,实现通道的分离和合并。

2.cv.split函数分离出的b、g、r是单通道图像

以上就是Python+OpenCV图像处理—— 色彩空间转换的详细内容,更多关于Python+OpenCV图像处理的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python环境使用OpenCV检测人脸实现教程

    一.文章概述 本文将要讲述的是Python环境下如何用OpenCV检测人脸,本文的主要内容分为: 1.检测图片中的人脸 2.实时检测视频中出现的人脸 3.用运设备的摄像头实时检测人脸 二:准备工作 提前做的准备: 安装好Python3 下载安装OpenCV库,方法是 pip install opencv-python -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com/pypi/simple 下

  • 使用Python-OpenCV消除图像中孤立的小区域操作

    之前一直使用Skimage中的形态学处理来进行孤立小区域的去除,代码如下 img = morphology.remove_small_objects(img, size) img = morphology.remove_small_holes(img, size) 后面需要将相应算法翻译到C++环境中,而Skimage没有对应的C++版本,为了确保python算法和C++算法结果的一致性,需要进行迁移,因而打算使用OpenCV来重写去除孤立小区域的代码.代码如下: _,binary = cv2.

  • OpenCV利用python来实现图像的直方图均衡化

    1.直方图 直方图: (1) 图像中不同像素等级出现的次数 (2) 图像中具有不同等级的像素关于总像素数目的比值. 我们使用cv2.calcHist方法得到直方图 cv2.calcHist(images, channels, mask, histSize, ranges): -img: 图像 -channels: 选取图像的哪个通道 -histSize: 直方图大小 -ranges: 直方图范围 cv2.minMaxLoc: 返回直方图的最大最小值,以及他们的索引 import cv2 impo

  • Python OpenCV读取中文路径图像的方法

    引言 这几天做点小东西,涉及到OpenCV读取中文图像的问题 如果直接读取中文路径的图像,往往返回[] import cv2 cv_im = cv2.imread('老干妈.jpg') 缘起 偶然发现opencv 读取图像,解决imread不能读取中文路径的问题文章,代码简单有效,可以参考下文章底部附录 im = cv2.imdecode(np.fromfile(im_name,dtype=np.uint8),-1) 但是作者代码注释中说该方法读取的图像的通道就会变为RGB,但是我实验仍为BGR

  • python opencv把一张图片嵌入(叠加)到另一张图片上的实现代码

    python opencv把一张图片嵌入(叠加)到另一张图片上 1.背景: 最近做了个烟火生成系统的界面设计,需要将烟雾图片嵌入到任意一张图片中,因此需要python opencv把一张图片嵌入(叠加)到另一张图片上的知识.(图中红框最终生成图片没有的,只是界面有这个功能) 2.代码 resized1[global_y0:height+global_y0, global_x0:weight+global_x0] = resized0 resized0是小图 resized1是大图,其他参数是左上

  • Python Opencv轮廓常用操作代码实例解析

    1.颜色空间转换 使用cv2.cvtColor(input_image ,flag),flag为转换类型 常用的转换类型有: BGR和灰度图的转换使用 cv2.COLOR_BGR2GRAY BGR和HSV的转换使用 cv2.COLOR_BGR2HSV img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 2.二值化 ret, dst = cv2.threshold(src, thresh, maxval, type) src:表示的是图片源(灰度图)

  • Python+OpenCV图像处理——打印图片属性、设置存储路径、调用摄像头

    一. 打印图片属性.设置图片存储路径 代码如下: #打印图片的属性.保存图片位置 import cv2 as cv import numpy as np #numpy是一个开源的Python科学计算库 def get_image_info(image): print(type(image)) #type() 函数如果只有第一个参数则返回对象的类型 在这里函数显示图片类型为 numpy类型的数组 print(image.shape) #图像矩阵的shape属性表示图像的大小,shape会返回tup

  • OpenCV+python实现实时目标检测功能

    环境安装 安装Anaconda,官网链接Anaconda 使用conda创建py3.6的虚拟环境,并激活使用 conda create -n py3.6 python=3.6 //创建 conda activate py3.6 //激活 3.安装依赖numpy和imutils //用镜像安装 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy pip install -i https://pypi.tuna.tsinghua

  • python opencv pytesseract 验证码识别的实现

    一.环境配置 需要 pillow 和 pytesseract 这两个库,pip install 安装就好了. install pillow -i http://pypi.douban.com/simple --trusted-host pypi.douban.com pip install pytesseract -i http://pypi.douban.com/simple --trusted-host pypi.douban.com 安装好Tesseract-OCR.exe pytesse

  • 详解python中GPU版本的opencv常用方法介绍

    引言 本篇是以python的视角介绍相关的函数还有自我使用中的一些问题,本想在这篇之前总结一下opencv编译的全过程,但遇到了太多坑,暂时不太想回看做过的笔记,所以这里主要总结python下GPU版本的opencv. 主要函数说明 threshold():二值化,但要指定设定阈值 blendLinear():两幅图片的线形混合 calcHist() createBoxFilter ():创建一个规范化的2D框过滤器 canny边缘检测 createGaussianFilter():创建一个Ga

随机推荐