matplotlib subplots 调整子图间矩的实例

在matplotlib中,用subplots画子图时,有时候需要调整子图间矩,包括子图与边框的间矩,子图间上下间矩,子图间左右间矩,可以使用fig.tight_layout()函数:

Help on method tight_layout in module matplotlib.figure:

tight_layout(renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None) method of matplotlib.figure.Figure instance
  Adjust subplot parameters to give specified padding.

  Parameters:

   *pad* : float
    padding between the figure edge and the edges of subplots,
    as a fraction of the font-size.
   *h_pad*, *w_pad* : float
    padding (height/width) between edges of adjacent subplots.
    Defaults to `pad_inches`.
   *rect* : if rect is given, it is interpreted as a rectangle
    (left, bottom, right, top) in the normalized figure
    coordinate that the whole subplots area (including
    labels) will fit into. Default is (0, 0, 1, 1).

以上这篇matplotlib subplots 调整子图间矩的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python Matplotlib画图之调整字体大小的示例

    一张字体调整好的示例图: 字体大小就是 fontsize 参数 import matplotlib.pyplot as plt # 代码中的"..."代表省略的其他参数 ax = plt.subplot(111) # 设置刻度字体大小 plt.xticks(fontsize=20) plt.yticks(fontsize=20) # 设置坐标标签字体大小 ax.xlabel(..., fontsize=20) ax.ylabel(..., fontsize=20) # 设置图例字体大小

  • matplotlib调整子图间距,调整整体空白的方法

    如下所示: fig.tight_layout()#调整整体空白 plt.subplots_adjust(wspace =0, hspace =0)#调整子图间距 以上这篇matplotlib调整子图间距,调整整体空白的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python matplotlib画图实例代码分享

    python的matplotlib包支持我们画图,有点非常多,现学习如下. 首先要导入包,在以后的示例中默认已经导入这两个包 import matplotlib.pyplot as plt import numpy as np 然后画一个最基本的图 t = np.arange(0.0, 2.0, 0.01)#x轴上的点,0到2之间以0.01为间隔 s = np.sin(2*np.pi*t)#y轴为正弦 plt.plot(t, s)#画图 plt.xlabel('time (s)')#x轴标签 p

  • Python数据分析matplotlib设置多个子图的间距方法

    注意,要看懂这里,必须具备简单的Python数据分析知识,必须知道matplotlib的简单使用! 例1: plt.subplot(221) # 第一行的左图 plt.subplot(222) # 第一行的右图 plt.subplot(212) # 第二整行 plt.title('xxx') plt.tight_layout() #设置默认的间距 例2: for i in range(25): plt.subplot(5,5,i+1) plt.tight_layout() 例3: # 设定画图板

  • matplotlib subplots 调整子图间矩的实例

    在matplotlib中,用subplots画子图时,有时候需要调整子图间矩,包括子图与边框的间矩,子图间上下间矩,子图间左右间矩,可以使用fig.tight_layout()函数: Help on method tight_layout in module matplotlib.figure: tight_layout(renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None) method of matplotlib.figure.

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • matplotlib.pyplot画图并导出保存的实例

    我就废话不多说了,直接上代码吧! import pandas as pd import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots() bar_positions=[1,2,3,4] bar_heights=[1,2,3,4] print(np.arange(len([2,2,3,4,5])+1)) ax.bar(np.arange(len([2,2,3,4,5])),[1,2,3,4,5], 0.5)#设

  • python matplotlib imshow热图坐标替换/映射实例

    今天遇到了这样一个问题,使用matplotlib绘制热图数组中横纵坐标自然是图片的像素排列顺序, 但是这样带来的问题就是画出来的x,y轴中坐标点的数据任然是x,y在数组中的下标, 实际中我们可能期望坐标点是其他的一个范围,如图: 坐标点标出来的是实际数组中的下标,而我希望纵坐标是频率,横坐标是其他的范围 plt.yticks(np.arange(0, 1024, 100), np.arange(10000, 11024, 100)) #第一个参数表示原来的坐标范围,100是每隔100个点标出一次

  • matplotlib 曲线图 和 折线图 plt.plot()实例

    我就废话不多说了,大家还是直接看代码吧! 绘制曲线: import time import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 1000) y = np.sin(x) plt.figure(figsize=(6,4)) plt.plot(x,y,color="red",linewidth=1 ) plt.xlabel("x") #xlabel.ylabel:分别设置X.

  • matplotlib绘制多子图共享鼠标光标的方法示例

    matplotlib官方除了提供了鼠标十字光标的示例,还提供了同一图像内多子图共享光标的示例,其功能主要由widgets模块中的MultiCursor类提供支持. MultiCursor类与Cursor类参数类似,差异主要在: Cursor类参数只有一个ax,即需要显示光标的子图:MultiCursor类参数为canvas和axes,其中axes为需要共享光标的子图列表. Cursor类中,光标默认是十字线:MultiCursor类中,光标默认为竖线. 官方示例 import numpy as

  • matplotlib.subplot()画子图并共享y坐标轴的方法

    有时候想要把几张图放在一起plot,比较好对比,subplot和subplots都可以实现,具体对比可以查看参考博文.这里用matplotlib库的subplot来举个栗子. 数据长什么样 有两个数据段,第一个数据是DataFrame类型,第二个是ndarray类型.每个数据都有3列,我想画1*3的折线子图,第一个数据的第n列和第二个数据的第n列画在一张子图上.先来看一下两个数据长什么样儿(为显示方便,只看前5行). In [1]: testing_set.head() # DataFrame类

  • Python Matplotlib绘制多子图详解

    通过获取子图的label和线型来合并图例 注意添加label #导入数据(读者可忽略) pre_lp=total_res#组合模型 true=diff1[-pre_day:]#真实值 pre_ph=results_data["yhat"]#prophet pre_lstm=reslut#lstm pre_ari=data_ari['data_pre']#arima #设置中文字体 rcParams['font.sans-serif'] = 'kaiti' # 生成一个时间序列 (读者可

  • Python+matplotlib绘制多子图的方法详解

    目录 本文速览 1.matplotlib.pyplot api 方式添加子图 2.面向对象方式添加子图 3.matplotlib.pyplot add_subplot方式添加子图 4.matplotlib.gridspec.GridSpec方式添加子图 5.子图中绘制子图 6.任意位置绘制子图(plt.axes) 本文速览 matplotlib.pyplot api 绘制子图 面向对象方式绘制子图 matplotlib.gridspec.GridSpec绘制子图 任意位置添加子图 关于pyplo

随机推荐