如何用 Python 制作一个迷宫游戏

相信大家都玩过迷宫的游戏,对于简单的迷宫,我们可以一眼就看出通路,但是对于复杂的迷宫,可能要仔细寻找好久,甚至耗费数天,然后可能还要分别从入口和出口两头寻找才能找的到通路,甚至也可能找不到通路。

虽然走迷宫问题对于我们人类来讲比较复杂,但对于计算机来说却是很简单的问题。为什么这样说呢,因为看似复杂实则是有规可循的。

我们可以这么做,携带一根很长的绳子,从入口出发一直走,如果有岔路口就走最左边的岔口,直到走到死胡同或者找到出路。如果是死胡同则退回上一个岔路口,我们称之为岔口 A,

这时进入左边第二个岔口,进入第二个岔口后重复第一个岔口的步骤,直到找到出路或者死胡同退回来。当把该岔路口所有的岔口都走了一遍,还未找到出路就沿着绳子往回走,走到岔口 A 的前一个路口 B,重复上面的步骤。

不知道你有没有发现,这其实就是一个不断递归的过程,而这正是计算机所擅长的。

上面这种走迷宫的算法就是我们常说的深度优先遍历算法,与之相对的是广度优先遍历算法。有了理论基础,下面我们就来试着用 程序来实现一个走迷宫的小程序。

生成迷宫

生成迷宫有很多种算法,常用的有递归回溯法、递归分割法和随机 Prim 算法,我们今天是用的最后一种算法。

该算法的主要步骤如下:
1、迷宫行和列必须为奇数
2、奇数行和奇数列的交叉点为路,其余点为墙,迷宫四周全是墙
3、选定一个为路的单元格(本例选 [1,1]),然后把它的邻墙放入列表 wall
4、当列表 wall 里还有墙时:
4.1、从列表里随机选一面墙,如果这面墙分隔的两个单元格只有一个单元格被访问过
4.1.1、那就从列表里移除这面墙,同时把墙打通
4.1.2、将单元格标记为已访问
4.1.3、将未访问的单元格的邻墙加入列表 wall
4.2、如果这面墙两面的单元格都已经被访问过,那就从列表里移除这面墙

我们定义一个 Maze 类,用二维数组表示迷宫地图,其中 1 表示墙壁,0 表示路,然后初始化左上角为入口,右下角为出口,最后定义下方向向量。

class Maze:
 def __init__(self, width, height):
  self.width = width
  self.height = height
  self.map = [[0 if x % 2 == 1 and y % 2 == 1 else 1 for x in range(width)] for y in range(height)]
  self.map[1][0] = 0 # 入口
  self.map[height - 2][width - 1] = 0 # 出口
  self.visited = []
  # right up left down
  self.dx = [1, 0, -1, 0]
  self.dy = [0, -1, 0, 1]

接下来就是生成迷宫的主函数了。

def generate(self):
 start = [1, 1]
 self.visited.append(start)
 wall_list = self.get_neighbor_wall(start)
 while wall_list:
  wall_position = random.choice(wall_list)
  neighbor_road = self.get_neighbor_road(wall_position)
  wall_list.remove(wall_position)
  self.deal_with_not_visited(neighbor_road[0], wall_position, wall_list)
  self.deal_with_not_visited(neighbor_road[1], wall_position, wall_list)

该函数里面有两个主要函数 get_neighbor_road(point) 和 deal_with_not_visited(),前者会获得传入坐标点 point 的邻路节点,返回值是一个二维数组,后者 deal_with_not_visited() 函数处理步骤 4.1 的逻辑。

由于 Prim 随机算法是随机的从列表中的所有的单元格进行随机选择,新加入的单元格和旧加入的单元格被选中的概率是一样的,因此其分支较多,生成的迷宫较复杂,难度较大,当然看起来也更自然些。生成的迷宫。
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1]
[1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1]
[1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1]
[1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1]
[1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1]
[1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

走出迷宫

得到了迷宫的地图,接下来就按照我们文首的思路来走迷宫即可。主要函数逻辑如下:

def dfs(self, x, y, path, visited=[]):
 # outOfIndex
 if self.is_out_of_index(x, y):
  return False

 # visited or is wall
 if [x, y] in visited or self.get_value([x, y]) == 1:
  return False

 visited.append([x, y])
 path.append([x, y])

 # end...
 if x == self.width - 2 and y == self.height - 2:
  return True

 # recursive
 for i in range(4):
  if 0 < x + self.dx[i] < self.width - 1 and 0 < y + self.dy[i] < self.height - 1 and \
    self.get_value([x + self.dx[i], y + self.dy[i]]) == 0:
   if self.dfs(x + self.dx[i], y + self.dy[i], path, visited):
    return True
   elif not self.is_out_of_index(x, y) and path[-1] != [x, y]:
    path.append([x, y])

很明显,这就是一个典型的递归程序。当该节点坐标越界、该节点被访问过或者该节点是墙壁的时候,直接返回,因为该节点肯定不是我们要找的路径的一部分,否则就将该节点加入被访问过的节点和路径的集合中。

然后如果该节点是出口则表示程序执行结束,找到了通路。不然就遍历四个方向向量,将节点的邻路传入函数 dfs 继续以上步骤,直到找到出路或者程序所有节点都遍历完成。

来看看我们 dfs 得出的路径结果:

[[0, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1], [6, 1], [7, 1], [8, 1], [9, 1], [9, 1], [8, 1], [7, 1], [6, 1], [5, 1], [5, 2], [5, 3], [6, 3], [7, 3], [8, 3], [9, 3], [9, 4], [9, 5], [9, 5], [9, 4], [9, 3], [8, 3], [7, 3], [7, 4], [7, 5], [7, 5], [7, 4], [7, 3], [6, 3], [5, 3], [4, 3], [3, 3], [2, 3], [1, 3], [1, 3], [2, 3], [3, 3], [3, 4], [3, 5], [2, 5], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 9], [1, 8], [1, 7], [1, 6], [1, 5], [2, 5], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 9], [3, 8], [3, 7], [3, 6], [3, 5], [3, 4], [3, 3], [4, 3], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [6, 7], [7, 7], [8, 7], [9, 7], [9, 8], [9, 9], [10, 9]]

可视化

有了迷宫地图和通路路径,剩下的工作就是将这些坐标点渲染出来。今天我们用的可视化库是 pyxel,这是一个用来写像素级游戏的 Python 库,

当然使用前需要先安装下这个库。

Win 用户直接用 pip install -U pyxel命令安装即可。

Mac 用户使用以下命令安装:

brew install python3 gcc sdl2 sdl2_image gifsicle
pip3 install -U pyxel

先来看个简单的 Demo。

import pyxel

class App:
 def __init__(self):
  pyxel.init(160, 120)
  self.x = 0
  pyxel.run(self.update, self.draw)

 def update(self):
  self.x = (self.x + 1) % pyxel.width

 def draw(self):
  pyxel.cls(0)
  pyxel.rect(self.x, 0, 8, 8, 9)

App()

类 App 的执行逻辑就是不断的调用 update 函数和 draw 函数,因此可以在 update 函数中更新物体的坐标,然后在 draw 函数中将图像画到屏幕即可。

如此我们就先把迷宫画出来,然后在渲染 dfs 遍历动画。

width, height = 37, 21
my_maze = Maze(width, height)
my_maze.generate()

class App:
 def __init__(self):
  pyxel.init(width * pixel, height * pixel)
  pyxel.run(self.update, self.draw)

 def update(self):
  if pyxel.btn(pyxel.KEY_Q):
   pyxel.quit()

  if pyxel.btn(pyxel.KEY_S):
   self.death = False

 def draw(self):
  # draw maze
  for x in range(height):
   for y in range(width):
    color = road_color if my_maze.map[x][y] is 0 else wall_color
    pyxel.rect(y * pixel, x * pixel, pixel, pixel, color)
  pyxel.rect(0, pixel, pixel, pixel, start_point_color)
  pyxel.rect((width - 1) * pixel, (height - 2) * pixel, pixel, pixel, end_point_color)

App()

看起来还可以,这里的宽和高我分别用了 37 和 21 个像素格来生成,所以生成的迷宫不是很复杂,如果像素点很多的话就会错综复杂了。

接下里来我们就需要修改 update 函数和 draw 函数来渲染路径了。为了方便操作,我们在 init 函数中新增几个属性。

self.index = 0
self.route = [] # 用于记录待渲染的路径
self.step = 1 # 步长,数值越小速度越快,1:每次一格;10:每次 1/10 格
self.color = start_point_color
self.bfs_route = my_maze.bfs_route()

其中 index 和 step 是用来控制渲染速度的,在 draw 函数中 index 每次自增 1,然后再对 step 求余数得到当前的真实下标 real_index,简言之就是 index 每增加 step,real_index 才会加一,渲染路径向前走一步。

def draw(self):
 # draw maze
 for x in range(height):
  for y in range(width):
   color = road_color if my_maze.map[x][y] is 0 else wall_color
   pyxel.rect(y * pixel, x * pixel, pixel, pixel, color)
 pyxel.rect(0, pixel, pixel, pixel, start_point_color)
 pyxel.rect((width - 1) * pixel, (height - 2) * pixel, pixel, pixel, end_point_color)

 if self.index > 0:
  # draw route
  offset = pixel / 2
  for i in range(len(self.route) - 1):
   curr = self.route[i]
   next = self.route[i + 1]
   self.color = backtrack_color if curr in self.route[:i] and next in self.route[:i] else route_color
   pyxel.line(curr[0] + offset, (curr[1] + offset), next[0] + offset, next[1] + offset, self.color)
  pyxel.circ(self.route[-1][0] + 2, self.route[-1][1] + 2, 1, head_color)
def update(self):
 if pyxel.btn(pyxel.KEY_Q):
  pyxel.quit()

 if pyxel.btn(pyxel.KEY_S):
  self.death = False

 if not self.death:
  self.check_death()
  self.update_route()

def check_death(self):
 if self.dfs_model and len(self.route) == len(self.dfs_route) - 1:
  self.death = True
 elif not self.dfs_model and len(self.route) == len(self.bfs_route) - 1:
  self.death = True

def update_route(self):
 index = int(self.index / self.step)
 self.index += 1
 if index == len(self.route): # move
  if self.dfs_model:
   self.route.append([pixel * self.dfs_route[index][0], pixel * self.dfs_route[index][1]])
  else:
   self.route.append([pixel * self.bfs_route[index][0], pixel * self.bfs_route[index][1]])

App()

至此,我们完整的从迷宫生成,到寻找路径,再到路径可视化已全部实现。直接调用主函数 App() 然后按 S 键盘开启游戏

总结

今天我们用深度优先算法实现了迷宫的遍历,对于新手来说,递归这思路可能比较难理解,但这才是符合计算机思维的,随着经验的加深会理解越来越深刻的。

其次我们用 pyxel 库来实现路径可视化,难点在于坐标的计算更新,细节比较多且繁琐,当然读者也可以用其他库或者直接用网页来实现也可以。

游戏源码:
https://github.com/JustDoPython/python-examples/blob/master/doudou/2020-06-12-maze/maze.py
快来一试身手吧。

以上就是如何用 Python 制作一个迷宫游戏的详细内容,更多关于python 制作迷宫游戏的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python 实现递归法解决迷宫问题的示例代码

    迷宫问题 问题描述: 迷宫可用方阵 [m, n] 表示,0 表示可通过,1 表示不能通过.若要求左上角 (0, 0) 进入,设计算法寻求一条能从右下角 (m-1, n-1) 出去的路径. 示例图: 此示例图基本参数为: m:对应 x 轴n:对应 y 轴 绿色线代表期望输出的路径 算法思路 标记当前所在位置 如果此时所在位置为终点,说明可以到达终点,退出递归: 否则,则存在 4 种可能的移动方向即上.下.左.右,遍历这 4 个方向,如果这 4 个方向存在相邻值为 0 的点,则将当前点坐标标记为该相

  • python实现的生成随机迷宫算法核心代码分享(含游戏完整代码)

    完整代码下载:http://xiazai.jb51.net/201407/tools/python-migong.rar 最近研究了下迷宫的生成算法,然后做了个简单的在线迷宫游戏.游戏地址和对应的开源项目地址可以通过上面的链接找到.开源项目中没有包含服务端的代码,因为服务端的代码实在太简单了.下面将简单的介绍下随机迷宫的生成算法.一旦理解后你会发现这个算法到底有多简单. 1.将迷宫地图分成多个房间,每个房间都有四面墙. 2.让"人"从地图任意一点A出发,开始在迷宫里游荡.从A房间的1/

  • 10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径

    深度优先算法(DFS 算法)是什么? 寻找起始节点与目标节点之间路径的算法,常用于搜索逃出迷宫的路径.主要思想是,从入口开始,依次搜寻周围可能的节点坐标,但不会重复经过同一个节点,且不能通过障碍节点.如果走到某个节点发现无路可走,那么就会回退到上一个节点,重新选择其他路径.直到找到出口,或者退到起点再也无路可走,游戏结束.当然,深度优先算法,只要查找到一条行得通的路径,就会停止搜索:也就是说只要有路可走,深度优先算法就不会回退到上一步. 如果你依然在编程的世界里迷茫,可以加入我们的Python学

  • Python基于递归算法实现的走迷宫问题

    本文实例讲述了Python基于递归算法实现的走迷宫问题.分享给大家供大家参考,具体如下: 什么是递归? 简单地理解就是函数调用自身的过程就称之为递归. 什么时候用到递归? 如果一个问题可以表示为更小规模的迭代运算,就可以使用递归算法. 迷宫问题:一个由0或1构成的二维数组中,假设1是可以移动到的点,0是不能移动到的点,如何从数组中间一个值为1的点出发,每一只能朝上下左右四个方向移动一个单位,当移动到二维数组的边缘,即可得到问题的解,类似的问题都可以称为迷宫问题. 在python中可以使用list

  • Python迷宫生成和迷宫破解算法实例

    迷宫生成 1.随机PRIM 思路:先让迷宫中全都是墙,不断从列表(最初只含有一个启始单元格)中选取一个单元格标记为通路,将其周围(上下左右)未访问过的单元格放入列表并标记为已访问,再随机选取该单元格与周围通路单元格(若有的话)之间的一面墙打通.重复以上步骤直到列表为空,迷宫生成完毕.这种方式生成的迷宫难度高,岔口多. 效果: 代码: import random import numpy as np from matplotlib import pyplot as plt def build_tw

  • Python深度优先算法生成迷宫

    本文实例为大家分享了Python深度优先算法生成迷宫,供大家参考,具体内容如下 import random #warning: x and y confusing sx = 10 sy = 10 dfs = [[0 for col in range(sx)] for row in range(sy)] maze = [[' ' for col in range(2*sx+1)] for row in range(2*sy+1)] #1:up 2:down 3:left 4:right opera

  • Python基于分水岭算法解决走迷宫游戏示例

    本文实例讲述了Python基于分水岭算法解决走迷宫游戏.分享给大家供大家参考,具体如下: #Solving maze with morphological transformation """ usage:Solving maze with morphological transformation needed module:cv2/numpy/sys ref: 1.http://www.mazegenerator.net/ 2.http://blog.leanote.com

  • Python解决走迷宫问题算法示例

    本文实例讲述了Python解决走迷宫问题算法.分享给大家供大家参考,具体如下: 问题: 输入n * m 的二维数组 表示一个迷宫 数字0表示障碍 1表示能通行 移动到相邻单元格用1步 思路: 深度优先遍历,到达每一个点,记录从起点到达每一个点的最短步数 初始化案例: 1   1   0   1   1 1   0   1   1   1 1   0   1   0   0 1   0   1   1   1 1   1   1   0   1 1   1   1   1   1 1 把图周围加上

  • 一道python走迷宫算法题

    前几天逛博客时看到了这样一道问题,感觉比较有趣,就自己思考了下方案顺便用python实现了一下.题目如下: 用一个二维数组表示一个简单的迷宫,用0表示通路,用1表示阻断,老鼠在每个点上可以移动相邻的东南西北四个点,设计一个算法,模拟老鼠走迷宫,找到从入口到出口的一条路径. 如图所示: 先说下我的思路吧: 1.首先用一个列表source存储迷宫图,一个列表route_stack存储路线图,一个列表route_history存储走过的点,起点(0,0),终点(4,4). 2.老鼠在每个点都有上下左右

  • Python使用回溯法子集树模板解决迷宫问题示例

    本文实例讲述了Python使用回溯法解决迷宫问题.分享给大家供大家参考,具体如下: 问题 给定一个迷宫,入口已知.问是否有路径从入口到出口,若有则输出一条这样的路径.注意移动可以从上.下.左.右.上左.上右.下左.下右八个方向进行.迷宫输入0表示可走,输入1表示墙.为方便起见,用1将迷宫围起来避免边界问题. 分析 考虑到左.右是相对的,因此修改为:北.东北.东.东南.南.西南.西.西北八个方向.在任意一格内,有8个方向可以选择,亦即8种状态可选.因此从入口格子开始,每进入一格都要遍历这8种状态.

  • 用Python代码来解图片迷宫的方法整理

    译注:原文是StackOverflow上一个如何用程序读取迷宫图片并求解的问题,几位参与者热烈地讨论并给出了自己的代码,涉及到用Python对图片的处理以及广度优先(BFS)算法等. 问题by Whymarrh: 当给定上面那样一张JPEG图片,如何才能更好地将这张图转换为合适的数据结构并且解出这个迷宫? 我的第一直觉是将这张图按像素逐个读入,并存储在一个包含布尔类型元素的列表或数组中,其中True代表白色像素,False代表非白色像素(或彩色可以被处理成二值图像).但是这种做法存在一个问题,那

  • Python使用Tkinter实现机器人走迷宫

    这本是课程的一个作业研究搜索算法,当时研究了一下Tkinter,然后写了个很简单的机器人走迷宫的界面,并且使用了各种搜索算法来进行搜索,如下图: 使用A*寻找最优路径: 由于时间关系,不分析了,我自己贴代码吧.希望对一些也要用Tkinter的人有帮助. from Tkinter import * from random import * import time import numpy as np import util class Directions: NORTH = 'North' SOU

随机推荐