PyTorch中permute的基本用法示例

目录
  • permute(dims)
  • 附:permute(多维数组,[维数的组合])
  • 总结

permute(dims)

将tensor的维度换位。

参数:参数是一系列的整数,代表原来张量的维度。比如三维就有0,1,2这些dimension。

例:

import torch
import numpy    as np

a=np.array([[[1,2,3],[4,5,6]]])

unpermuted=torch.tensor(a)
print(unpermuted.size())  #  ——>  torch.Size([1, 2, 3])

permuted=unpermuted.permute(2,0,1)
print(permuted.size())     #  ——>  torch.Size([3, 1, 2])

再比如图片img的size比如是(28,28,3)就可以利用img.permute(2,0,1)得到一个size为(3,28,28)的tensor。

利用这个函数permute(0,2,1)可以把Tensor([[[1,2,3],[4,5,6]]]) 转换成

tensor([[[1., 4.],
        [2., 5.],
        [3., 6.]]])

如果使用view,可以得到

tensor([[[1., 2.],
         [3., 4.],
         [5., 6.]]])

关于view的用法:参见PyTorch中view的用法

附:permute(多维数组,[维数的组合])

比如:

a=rand(2,3,4);  %这是一个三维数组,各维的长度分别为:2,3,4

%现在交换第一维和第二维:

permute(A,[2,1,3])  %变成3*2*4的矩阵

import torch
import numpy    as np

a=np.array([[[1,2,3],[4,5,6]]])

unpermuted=torch.tensor(a)
print(unpermuted.size())  #  ——>  torch.Size([1, 2, 3])

tensor([[[1., 4.],
        [2., 5.],
        [3., 6.]]])

permuted=unpermuted.permute(2,0,1)
print(permuted.size())     #  ——>  torch.Size([3, 1, 2])

tensor([[[1., 2.],
         [3., 4.],
         [5., 6.]]])

总结

到此这篇关于PyTorch中permute的基本用法的文章就介绍到这了,更多相关PyTorch permute的用法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch permute维度转换方法

    permute prediction = input.view(bs, self.num_anchors, self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous() 转置: import torch x = torch.linspace(1, 9, steps=9).view(3, 3) b=x.permute(1,0) print(b) print(b.permute(1,0)) 以上这篇pytorch permute维度

  • 基于PyTorch的permute和reshape/view的区别介绍

    二维的情况 先用二维tensor作为例子,方便理解. permute作用为调换Tensor的维度,参数为调换的维度.例如对于一个二维Tensor来说,调用tensor.permute(1,0)意为将1轴(列轴)与0轴(行轴)调换,相当于进行转置. In [20]: a Out[20]: tensor([[0, 1, 2], [3, 4, 5]]) In [21]: a.permute(1,0) Out[21]: tensor([[0, 3], [1, 4], [2, 5]]) 如果使用view(

  • PyTorch中permute的用法详解

    permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size()) # --> torch.Size([1, 2, 3]) permuted=unpermuted.permute(

  • PyTorch中permute的基本用法示例

    目录 permute(dims) 附:permute(多维数组,[维数的组合]) 总结 permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy    as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size())  #  -->  

  • pytorch中permute()函数用法补充说明(矩阵维度变化过程)

    目录 一.前言 二.举例解释 1.permute(0,1,2) 2.permute(0,1,2) ⇒ permute(0,2,1) 3.permute(0,2,1) ⇒ permute(1,0,2) 4.permute(1,0,2) ⇒ permute(0,2,1) 三.写在最后 一.前言 之前写了篇torch中permute()函数用法文章,在详细的说一下permute函数里维度变化的详细过程 非常感谢@m0_46225327对本文案例更加细节补充 注意: 本文是这篇torch中permute

  • pytorch中permute()函数用法实例详解

    目录 前言 三维情况 变化一:不改变任何参数 变化二:1与2交换 变化三:0与1交换 变化四:0与2交换 变化五:0与1交换,1与2交换 变化六:0与1交换,0与2交换 总结 前言 本文只讨论二维三维中的permute用法 最近的Attention学习中的一个permute函数让我不理解 这个光说太抽象 我就结合代码与图片解释一下 首先创建一个三维数组小实例 import torch x = torch.linspace(1, 30, steps=30).view(3,2,5) # 设置一个三维

  • PyTorch中反卷积的用法详解

    pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, b

  • pytorch中nn.Conv1d的用法详解

    先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自我修养) class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn

  • PyTorch中topk函数的用法详解

    听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序

  • Pytorch中膨胀卷积的用法详解

    卷积和膨胀卷积 在深度学习中,我们会碰到卷积的概念,我们知道卷积简单来理解就是累乘和累加,普通的卷积我们在此不做赘述,大家可以翻看相关书籍很好的理解. 最近在做项目过程中,碰到Pytorch中使用膨胀卷积的情况,想要的输入输出是图像经过四层膨胀卷积后图像的宽高尺寸不发生变化. 开始我的思路是padding='SAME'结合strides=1来实现输入输出尺寸不变,试列好多次还是有问题,报了张量错误的提示,想了好久也没找到解决方法,上网搜了下,有些人的博客说经过膨胀卷积之后图像的尺寸不发生变化,有

  • PyTorch中Tensor的数据统计示例

    张量范数:torch.norm(input, p=2) → float 返回输入张量 input 的 p 范数 举个例子: >>> import torch >>> a = torch.full([8], 1) >>> b = a.view(2, 4) >>> c = a.view(2, 2, 2) >>> a.norm(1), b.norm(1), c.norm(1) # 求 1- 范数 (tensor(8.),

  • PyTorch 中的傅里叶卷积实现示例

    卷积 卷积在数据分析中无处不在.几十年来,它们一直被用于信号和图像处理.最近,它们成为现代神经网络的重要组成部分.如果你处理数据的话,你可能会遇到错综复杂的问题. 数学上,卷积表示为: 尽管离散卷积在计算应用程序中更为常见,但在本文的大部分内容中我将使用连续形式,因为使用连续变量来证明卷积定理(下面讨论)要容易得多.之后,我们将回到离散情况,并使用傅立叶变换在 PyTorch 中实现它.离散卷积可以看作是连续卷积的近似,其中连续函数离散在规则网格上.因此,我们不会为这个离散的案例重新证明卷积定理

随机推荐