python神经网络学习使用Keras进行简单分类

目录
  • 学习前言
  • Keras中分类的重要函数
    • 1、np_utils.to_categorical
    • 2、Activation
    • 3、metrics=[‘accuracy’]
  • 全部代码

学习前言

上一步讲了如何构建回归算法,这一次将怎么进行简单分类。

Keras中分类的重要函数

1、np_utils.to_categorical

np_utils.to_categorical用于将标签转化为形如(nb_samples, nb_classes)的二值序列。

假设num_classes = 10。

如将[1,2,3,……4]转化成:

[[0,1,0,0,0,0,0,0]
[0,0,1,0,0,0,0,0]
[0,0,0,1,0,0,0,0]
……
[0,0,0,0,1,0,0,0]]

这样的形态。

如将Y_train转化为二值序列,可以用如下方式:

Y_train = np_utils.to_categorical(Y_train,num_classes= 10)

2、Activation

Activation是激活函数,一般在每一层的输出使用。

当我们使用Sequential模型构建函数的时候,只需要在每一层Dense后面添加Activation就可以了。

Sequential函数也支持直接在参数中完成所有层的构建,使用方法如下。

model = Sequential([
    Dense(32,input_dim = 784),
    Activation("relu"),
    Dense(10),
    Activation("softmax")
    ]
)

其中两次Activation分别使用了relu函数和softmax函数。

3、metrics=[‘accuracy’]

在model.compile中添加metrics=[‘accuracy’]表示需要计算分类精确度,具体使用方式如下:

model.compile(
	loss = 'categorical_crossentropy',
	optimizer = rmsprop,
	metrics=['accuracy']
)

全部代码

这是一个简单的仅含有一个隐含层的神经网络,用于完成手写体识别。在本例中,使用的优化器是RMSprop,具体可以使用的优化器可以参照Keras中文文档

import numpy as np
from keras.models import Sequential
from keras.layers import Dense,Activation ## 全连接层
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import RMSprop
# 获取训练集
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
# 首先进行标准化
X_train = X_train.reshape(X_train.shape[0],-1)/255
X_test = X_test.reshape(X_test.shape[0],-1)/255
# 计算categorical_crossentropy需要对分类结果进行categorical
# 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
# 构建模型
model = Sequential([
    Dense(32,input_dim = 784),
    Activation("relu"),
    Dense(10),
    Activation("softmax")
    ]
)
rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0)
## compile
model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy'])
print("\ntraining")
cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 32)
print("\nTest")
cost,accuracy = model.evaluate(X_test,Y_test)
## W,b = model.layers[0].get_weights()
print("accuracy:",accuracy)

实验结果为:

Epoch 1/2
60000/60000 [==============================] - 12s 202us/step - loss: 0.3512 - acc: 0.9022
Epoch 2/2
60000/60000 [==============================] - 11s 183us/step - loss: 0.2037 - acc: 0.9419
Test
10000/10000 [==============================] - 1s 108us/step
accuracy: 0.9464

以上就是python神经网络学习使用Keras进行简单分类的详细内容,更多关于python神经网络Keras分类的资料请关注我们其它相关文章!

(0)

相关推荐

  • keras tensorflow 实现在python下多进程运行

    如下所示: from multiprocessing import Process import os def training_function(...): import keras # 此处需要在子进程中 ... if __name__ == '__main__': p = Process(target=training_function, args=(...,)) p.start() 原文地址:https://stackoverflow.com/questions/42504669/ker

  • Python3.7安装keras和TensorFlow的教程图解

    win10 Python3.7安装keras深度学习集成包 TensorFlow 和Ubuntu下安装keras 在win10下安装 安装时必须检查你的python是否为64位,32位不支持!!! 32 位卸载 下载其中的64位在python官网 https://www.python.org/downloads/windows/ 然后在 pip install --upgrade tensorflow 如果出现错误可以手动选择下载然后安装对于3.7以上版本更适合 https://www.lfd.

  • Python搭建Keras CNN模型破解网站验证码的实现

    在本项目中,将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的验证码.验证码如下: 利用Keras可以快速方便地搭建CNN模型,本项目搭建的CNN模型如下: 将数据集分为训练集和测试集,占比为8:2,该模型训练的代码如下: # -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from matplotlib im

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • python神经网络学习使用Keras进行简单分类

    目录 学习前言 Keras中分类的重要函数 1.np_utils.to_categorical 2.Activation 3.metrics=[‘accuracy’] 全部代码 学习前言 上一步讲了如何构建回归算法,这一次将怎么进行简单分类. Keras中分类的重要函数 1.np_utils.to_categorical np_utils.to_categorical用于将标签转化为形如(nb_samples, nb_classes)的二值序列. 假设num_classes = 10. 如将[1

  • python神经网络学习使用Keras进行回归运算

    目录 学习前言 什么是Keras Keras中基础的重要函数 1.Sequential 2.Dense 3.model.compile 全部代码 学习前言 看了好多Github,用于保存模型的库都是Keras,我觉得还是好好学习一下的好 什么是Keras Keras是一个由Python编写的开源人工神经网络库,可以作Tensorflow.Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计.调试.评估.应用和可视化. Keras相当于比Tensorflow和The

  • python神经网络学习利用PyTorch进行回归运算

    目录 学习前言 PyTorch中的重要基础函数 1.class Net(torch.nn.Module)神经网络的构建: 2.optimizer优化器 3.loss损失函数定义 4.训练过程 全部代码 学习前言 我发现不仅有很多的Keras模型,还有很多的PyTorch模型,还是学学Pytorch吧,我也想了解以下tensor到底是个啥. PyTorch中的重要基础函数 1.class Net(torch.nn.Module)神经网络的构建: PyTorch中神经网络的构建和Tensorflow

  • python神经网络学习数据增强及预处理示例详解

    目录 学习前言 处理长宽不同的图片 数据增强 1.在数据集内进行数据增强 2.在读取图片的时候数据增强 3.目标检测中的数据增强 学习前言 进行训练的话,如果直接用原图进行训练,也是可以的(就如我们最喜欢Mnist手写体),但是大部分图片长和宽不一样,直接resize的话容易出问题. 除去resize的问题外,有些时候数据不足该怎么办呢,当然要用到数据增强啦. 这篇文章就是记录我最近收集的一些数据预处理的方式 处理长宽不同的图片 对于很多分类.目标检测算法,输入的图片长宽是一样的,如224,22

  • Python深度学习之Keras模型转换成ONNX模型流程详解

    目录 从Keras转换成PB模型 从PB模型转换成ONNX模型 改变现有的ONNX模型精度 部署ONNX 模型 总结 从Keras转换成PB模型 请注意,如果直接使用Keras2ONNX进行模型转换大概率会出现报错,这里笔者曾经进行过不同的尝试,最后都失败了. 所以笔者的推荐的情况是:首先将Keras模型转换为TensorFlow PB模型. 那么通过tf.keras.models.load_model()这个函数将模型进行加载,前提是你有一个基于h5格式或者hdf5格式的模型文件,最后再通过改

  • python神经网络使用Keras进行模型的保存与读取

    目录 学习前言 Keras中保存与读取的重要函数 1.model.save 2.load_model 全部代码 学习前言 开始做项目的话,有些时候会用到别人训练好的模型,这个时候要学会load噢. Keras中保存与读取的重要函数 1.model.save model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式. pip install h5py 完成安装后,可以通过如下函数保存模型.

  • Python深度学习之Unet 语义分割模型(Keras)

    目录 前言 一.什么是语义分割 二.Unet 1.基本原理 2.mini_unet 3. Mobilenet_unet 4.数据加载部分 参考 前言 最近由于在寻找方向上迷失自我,准备了解更多的计算机视觉任务重的模型.看到语义分割任务重Unet一个有意思的模型,我准备来复现一下它. 一.什么是语义分割 语义分割任务,如下图所示: 简而言之,语义分割任务就是将图片中的不同类别,用不同的颜色标记出来,每一个类别使用一种颜色.常用于医学图像,卫星图像任务. 那如何做到将像素点上色呢? 其实语义分割的输

  • Python深度学习之简单实现猫狗图像分类

    一.前言 本文使用的是 kaggle 猫狗大战的数据集 训练集中有 25000 张图像,测试集中有 12500 张图像.作为简单示例,我们用不了那么多图像,随便抽取一小部分猫狗图像到一个文件夹里即可. 通过使用更大.更复杂的模型,可以获得更高的准确率,预训练模型是一个很好的选择,我们可以直接使用预训练模型来完成分类任务,因为预训练模型通常已经在大型的数据集上进行过训练,通常用于完成大型的图像分类任务. tf.keras.applications中有一些预定义好的经典卷积神经网络结构(Applic

  • Python深度学习之实现卷积神经网络

    一.卷积神经网络 Yann LeCun 和Yoshua Bengio在1995年引入了卷积神经网络,也称为卷积网络或CNN.CNN是一种特殊的多层神经网络,用于处理具有明显网格状拓扑的数据.其网络的基础基于称为卷积的数学运算. 卷积神经网络(CNN)的类型 以下是一些不同类型的CNN: 1D CNN:1D CNN 的输入和输出数据是二维的.一维CNN大多用于时间序列. 2D CNNN:2D CNN的输入和输出数据是三维的.我们通常将其用于图像数据问题. 3D CNNN:3D CNN的输入和输出数

  • Python深度学习pytorch卷积神经网络LeNet

    目录 LeNet 模型训练 在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一.这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字.当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法.LeNet被广泛用于自动取款机中,帮助识别处理支票的数字. LeNet 总体来看,LeNet(LeNet-5)由两个部分组成: 卷积编码器: 由两个卷积层组成 全连接层密集快: 由三个全连接层组成 每个卷积块中的基本单元

随机推荐