Python基于opencv实现的人脸识别(适合初学者)

目录
  • 一点背景知识
  • 一、人脸识别步骤
  • 二、直接上代码
    • (1)录入人脸.py
    • (2)数据训练.py
    • (3)进行识别.py
  • 三、运行过程及结果
    • 1、获取人脸照片于目标文件中
    • 2、进行数据训练,获得trainer.yml文件中的数据
    • 3.进行识别
  • 总结

一点背景知识

OpenCV 是一个开源的计算机视觉和机器学习库。它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包。根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影。

OpenCV 起始于 1999 年 Intel 的一个内部研究项目。从那时起,它的开发就一直很活跃。进化到现在,它已支持如 OpenCL 和 OpenGL 等现代技术,也支持如 iOS 和 Android 等平台。

1999 年,半条命发布后大红大热。Intel 奔腾 3 处理器是当时最高级的 CPU,400-500 MHZ 的时钟频率已被认为是相当快。2006 年 OpenCV 1.0 版本发布的时候,当时主流 CPU 的性能也只和 iPhone 5 的 A6 处理器相当。尽管计算机视觉从传统上被认为是计算密集型应用,但我们的移动设备性能已明显地超出能够执行有用的计算机视觉任务的阈值,带着摄像头的移动设备可以在计算机视觉平台上大有所为。

本文为简单易懂的人脸识别!

一、人脸识别步骤

二、直接上代码

(1)录入人脸.py

import cv2

face_name = 'cjw'  # 该人脸的名字

# 加载OpenCV人脸检测分类器
face_cascade = cv2.CascadeClassifier("D:/BaiduNetdiskDownload/python/opencv/opencv-4.5.1/"
                                     "data/haarcascades/haarcascade_frontalface_default.xml")
recognizer = cv2.face.LBPHFaceRecognizer_create()  # 准备好识别方法LBPH方法

camera = cv2.VideoCapture(0)  # 0:开启摄像头
success, img = camera.read()  # 从摄像头读取照片
W_size = 0.1 * camera.get(3)  # 在视频流的帧的宽度
H_size = 0.1 * camera.get(4)  # 在视频流的帧的高度

def get_face():
    print("正在从摄像头录入新人脸信息 \n")
    picture_num = 0  # 设置录入照片的初始值
    while True:  # 从摄像头读取图片
        global success  # 设置全局变量
        global img  # 设置全局变量
        ret, frame = camera.read()  # 获得摄像头读取到的数据(ret为返回值,frame为视频中的每一帧)
        if ret is True:
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  # 转为灰度图片
        else:
            break

        face_detector = face_cascade  # 记录摄像头记录的每一帧的数据,让Classifier判断人脸
        faces = face_detector.detectMultiScale(gray, 1.3, 5)  # gray是要灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors

        for (x, y, w, h) in faces:  # 制造一个矩形框选人脸(xy为左上角的坐标,w为宽,h为高)
            cv2.rectangle(frame, (x, y), (x + w, y + w), (255, 0, 0))
            picture_num += 1  # 照片数加一
            t = face_name
            cv2.imwrite("./data/1." + str(t) + '.' + str(picture_num) + '.jpg', gray[y:y + h, x:x + w])
            # 保存图像,将脸部的特征转化为二维数组,保存在data文件夹内
        maximums_picture = 13  # 设置摄像头拍摄照片的数量的上限
        if picture_num > maximums_picture:
            break
        cv2.waitKey(1)

get_face()

注意:加载分类器的文件地址;cv2.imwrite:保存图片的路径

(2)数据训练.py

import os
import cv2
from PIL import Image
import numpy as np

def getlable(path):
    facesamples = []  # 储存人脸数据(该数据为二位数组)
    ids = []  # 储存星门数据
    imagepaths = [os.path.join(path, f) for f in os.listdir(path)]  # 储存图片信息
    face_detector = cv2.CascadeClassifier('D:/BaiduNetdiskDownload/python/opencv/opencv-4.5.1/data/haarcascades/'
                                          'haarcascade_frontalface_alt2.xml')  # 加载分类器
    print('数据排列:', imagepaths)  # 打印数组imagepaths
    for imagePath in imagepaths:  # 遍历列表中的图片
        pil_img = Image.open(imagePath).convert('L')
        # 打开图片,灰度化,PIL的两种不同模式:
        # (1)1(黑白,有像素的地方为1,无像素的地方为0)
        # (2)L(灰度图像,把每个像素点变成0~255的数值,颜色越深值越大)
        img_numpy = np.array(pil_img, 'uint8')  # 将图像转化为数组
        faces = face_detector.detectMultiScale(img_numpy)  # 获取人脸特征
        id = int(os.path.split(imagePath)[1].split('.')[0])  # 获取每张图片的id和姓名
        for x, y, w, h in faces:  # 预防无面容照片
            ids.append(id)
            facesamples.append(img_numpy[y:y+h, x:x+w])
        # 打印脸部特征和id
        print('id:', id)
    print('fs:', facesamples)
    return facesamples, ids

if __name__ == '__main__':
    path = 'D:/BaiduNetdiskDownload/python/opencv/pythonProject/face1/data'  # 图片路径
    faces, ids = getlable(path)  # 获取图像数组和id标签数组和姓名
    recognizer = cv2.face.LBPHFaceRecognizer_create()  # 获取训练对象
    recognizer.train(faces, np.array(ids))
    recognizer.write('trainer/trainer.yml')   # 保存生成的人脸特征数据文件
 

(3) 进行识别.py

import cv2
import os

# 加载训练数据集文件
recogizer = cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml')  # 获取脸部特征数据文件
names = []
warningtime = 0

def face_detect_demo(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换为灰度图像
    face_detector = cv2.CascadeClassifier('D:/BaiduNetdiskDownload/python/opencv/opencv-4.5.1/'
                                          'data/haarcascades/haarcascade_frontalface_default.xml')  # 加载分类器
    face = face_detector.detectMultiScale(gray, 1.3, 5, cv2.CASCADE_SCALE_IMAGE, (100, 100), (300, 300))
    # 进行识别,把整张人脸部分框起来
    for x, y, w, h in face:
        cv2.rectangle(img, (x, y), (x+w, y+h), color=(0, 0, 255), thickness=2)  # 矩形
        cv2.circle(img, center=(x+w//2, y+h//2), radius=w//2, color=(0, 255, 0), thickness=1)  # 圆形
        ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])  # 进行预测、评分
        if confidence > 80:
            global warningtime
            warningtime += 1
            if warningtime > 100:  # 警报达到一定次数,说明不是这个人
                warningtime = 0
            cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
        else:
            cv2.putText(img, str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
            # 把姓名打到人脸的框图上
    cv2.imshow('result', img)
    # print('bug:',ids)

def name():
    path = 'D:/BaiduNetdiskDownload/python/opencv/pythonProject/face1/data'
    imagepaths = [os.path.join(path, f) for f in os.listdir(path)]
    for imagePath in imagepaths:
        name1 = str(os.path.split(imagePath)[1].split('.', 2)[1])
        names.append(name1)

cap = cv2.VideoCapture('3.mp4')
name()
while True:
    flag, frame = cap.read()  # 获得摄像头读取到的数据(flag为返回值,frame为视频中的每一帧)
    if not flag:
        break
    face_detect_demo(frame)
    if ord(' ') == cv2.waitKey(10):  # 按空格,退出
        break
cv2.destroyAllWindows()
cap.release()
# print(names)

三、运行过程及结果

1、获取人脸照片于目标文件中

2、进行数据训练,获得trainer.yml文件中的数据

3.进行识别

总结

到此这篇关于Python基于opencv实现的人脸识别的文章就介绍到这了,更多相关opencv人脸识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python opencv实现人眼/人脸识别以及实时打码处理

    利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克. 系统环境:Windows 7 + Python 3.6.3 + opencv 3.4.2 一.系统.资源准备 要想达成该目标,需要满足一下几个条件: 找一台带有摄像头的电脑,一般笔记本即可: 需配有Python3,并安装NumPy包.opencv: 需要有已经训练好的分类器,用于识别视频中的人脸.人眼等,如无分类器,可以点击这里下载:haarcascades分类器 二.动手做 1.导入相关包.设置视频格式.

  • opencv 做人脸识别 opencv 人脸匹配分析

    机器学习 机器学习的目的是把数据转换成信息. 机器学习通过从数据里提取规则或模式来把数据转成信息. 人脸识别 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸. 每个节点的正确识别率很高,但正确拒绝率很低. 任一节点判断没有人脸特征则结束运算,宣布不是人脸. 全部节点通过,则宣布是人脸. 工业上,常用人脸识别技术来识别物体. 对图片进行识别 复制代码 代码如下: #include "opencv2/core/core.hpp" #include "opencv2/obj

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • 基于OpenCV的PHP图像人脸识别技术

    openCV是一个开源的用C/C++开发的计算机图形图像库,非常强大,研究资料很齐全.本文重点是介绍如何使用php来调用其中的局部的功能.人脸侦查技术只是openCV一个应用分支. 1.安装 从源代码编译成一个动态的so文件. 1.1.安装 OpenCV (OpenCV 1.0.0) 下载地址:http://sourceforge.net/project/showfiles.php?group_id=22870&package_id=16948 #tar xvzf OpenCV-1.0.0.ta

  • OpenCV实现人脸识别

    主要有以下步骤: 1.人脸检测 2.人脸预处理 3.从收集的人脸训练机器学习算法 4.人脸识别 5.收尾工作 人脸检测算法: 基于Haar的脸部检测器的基本思想是,对于面部正面大部分区域而言,会有眼睛所在区域应该比前额和脸颊更暗,嘴巴应该比脸颊更暗等情形.它通常执行大约20个这样的比较来决定所检测的对象是否为人脸,实际上经常会做上千次. 基于LBP的人脸检测器基本思想与基于Haar的人脸检测器类似,但它比较的是像素亮度直方图,例如,边缘.角落和平坦区域的直方图. 这两种人脸检测器可通过训练大的图

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • Python基于opencv实现的人脸识别(适合初学者)

    目录 一点背景知识 一.人脸识别步骤 二.直接上代码 (1)录入人脸.py (2)数据训练.py (3)进行识别.py 三.运行过程及结果 1.获取人脸照片于目标文件中 2.进行数据训练,获得trainer.yml文件中的数据 3.进行识别 总结 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • python基于opencv实现人脸识别

    将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别. 识别图像中的人脸 #coding:utf-8 import cv2 as cv # 读取原始图像 img = cv.imread('face.png') # 调用熟悉的人脸分类器 识别特征类型 # 人脸 - haarcascade_frontalface_default.xml # 人眼 - haarcascade_eye.xml # 微笑 - haarcascad

  • Python基于OpenCV实现人脸检测并保存

    本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下 安装opencv 如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处 导入opencv import cv2 所有包都包含haarcascade文件.这

  • 详解基于Facecognition+Opencv快速搭建人脸识别及跟踪应用

    人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁.刷脸打卡.App解锁.刷脸支付.口罩检测........ 作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~ Facecognition人脸识别原理大体可分为: 1.通过hog算子定位人脸,也可以用cnn模型,但本文没试过: 2.Dlib有专门的函数和模型,实现人脸68个特征点的定位.通过图像的几何变换(仿射.旋转.缩放),使各个特征点对齐(将眼睛.嘴等部位移

  • Python基于Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • python实现图像,视频人脸识别(opencv版)

    图片人脸识别 import cv2 filepath = "img/xingye-1.png" img = cv2.imread(filepath) # 读取图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器 classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haar

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • python基于Opencv实现人脸口罩检测

    一.开发环境 python 3.6.6 opencv-python 4.5.1 二.设计要求 1.使用opencv-python对人脸口罩进行检测 三.设计原理 设计流程图如图3-1所示, 图3-1 口罩检测流程图 首先进行图片的读取,使用opencv的haar鼻子特征分类器,如果检测到鼻子,则证明没有戴口罩.如果检测到鼻子,接着使用opencv的haar眼睛特征分类器,如果没有检测到眼睛,则结束.如果检测到眼睛,则把RGB颜色空间转为HSV颜色空间.进行口罩区域的检测.口罩区域检测流程是首先把

随机推荐