Python连接Hadoop数据中遇到的各种坑(汇总)

最近准备使用Python+Hadoop+Pandas进行一些深度的分析与机器学习相关工作。(当然随着学习过程的进展,现在准备使用Python+Spark+Hadoop这样一套体系来搭建后续的工作环境),当然这是后话。
但是这项工作首要条件就是将Python与Hadoop进行打通,本来认为很容易的一项工作,没有想到竟然遇到各种坑,花费了整整半天时间。后来也在网上看到大家在咨询相同的问题,但是真正解决这个问题的帖子又几乎没有,所以现在将Python连接Hadoop数据库过程中遇到的各种坑进行一个汇总,然后与大家进行分享,以尽量避免大家花费宝贵的时间。

(说明一下:这篇文章中的各种坑的解决,翻阅了网上无数的帖子,最好一GIT上面一个帖子的角落里面带了这么一句,否则很容易翻船。但是由于帖子太多,所以我就不一一帖出来了)

首先是选组件,我选择的是使用:impala+Python3.7来连接Hadoop数据库,如果你不是的话,就不要浪费宝贵时间继续阅读了。

执行的代码如下:

import impala.dbapi as ipdb
conn = ipdb.connect(host="192.168.XX.XXX",port=10000,user="xxx",password="xxxxxx",database="xxx",auth_mechanism='PLAIN')
cursor = conn.cursor()
#其中xxxx是表名,为了不涉及到公司的信息,我把表名隐藏掉了,大家自己换成自己数据库表名
cursor.execute('select * From xxxx')
print(cursor.description) # prints the result set's schema
for rowData in cursor.fetchall():
  print(rowData)
conn.close()

坑一:提示语法错误

现象:

/Users/wangxxin/miniconda3/bin/python3.7 /Users/wangxxin/Documents/Python/PythonDataAnalyze/project/knDt/pyHiveTest.py
Traceback (most recent call last):
  File "/Users/wangxxin/Documents/Python/PythonDataAnalyze/project/knDt/pyHiveTest.py", line 1, in <module>
    import impala.dbapi as ipdb
  File "/Users/wangxxin/miniconda3/lib/python3.7/site-packages/impala/dbapi.py", line 28, in <module>
    import impala.hiveserver2 as hs2
  File "/Users/wangxxin/miniconda3/lib/python3.7/site-packages/impala/hiveserver2.py", line 340
    async=True)

解决办法:将参数async全部修改为“async_”(当然这个可以随便,只要上下文一致,并且不是关键字即可),原因:在Python3.0中,已经将async标为关键词,如果再使用async做为参数,会提示语法错误;应该包括以下几个地方:

#hiveserver2.py文件338行左右
op = self.session.execute(self._last_operation_string,
                 configuration,
                 async_=True)
#hiveserver2.py文件1022行左右
def execute(self, statement, configuration=None, async_=False):
  req = TExecuteStatementReq(sessionHandle=self.handle,
                statement=statement,
                confOverlay=configuration,
                runAsync=async_)

坑二:提供的Parser.py文件有问题,加载的时候会报错

解决办法:

#根据网上的意见对原代码进行调整
elif url_scheme in ('c', 'd', 'e', 'f'):
  with open(path) as fh:
    data = fh.read()
elif url_scheme in ('http', 'https'):
  data = urlopen(path).read()
else:
  raise ThriftParserError('ThriftPy does not support generating module '
              'with path in protocol \'{}\''.format(
                url_scheme))

以上的坑一、坑二建议你直接修改。这两点是肯定要调整的;

坑三:上面的两个问题处理好之后,继续运行,会报如下错误:

TProtocolException: TProtocolException(type=4)

解决办法:

原因是由于connect方法里面没有增加参数:auth_mechanism='PLAIN,修改如下所示:

import impala.dbapi as ipdb
conn = ipdb.connect(host="192.168.XX.XXX",port=10000,user="xxx",password="xxxxxx",database="xxx",auth_mechanism='PLAIN')`

坑四:问题三修改好之后,继续运行程序,你会发现继续报错:

AttributeError: 'TSocket' object has no attribute 'isOpen'

解决办法:

由于是thrift-sasl的版本太高了(0.3.0),故将thrift-sasl的版本降级到0.2.1

pip uninstall thrift-sasl
pip install thrift-sasl==0.2.1

坑五:处理完这个问题后,继续运行,继续报错(这个时间解决有点快崩溃的节奏了,但是请坚持住,其实你已经很快接近最后结果了):

thriftpy.transport.TTransportException: TTransportException(type=1, message="Could not start SASL: b'Error in sasl_client_start (-4) SASL(-4): no mechanism available: Unable to find a callback: 2'")

解决办法:这个是最麻烦的,也是目前最难找到解决办法的。

I solved the issue, had to uninstall the package SASL and install PURE-SASL, when impyla can´t find the sasl package it works with pure-sasl and then everything goes well.

主要原因其实还是因为sasl和pure-sasl有冲突,这种情况下,直接卸载sasl包就可能了。

pip uninstall SASL

坑六:但是执行完成,继续完成,可能还是会报错:

TypeError: can't concat str to bytes

定位到错误的最后一条,在init.py第94行(标黄的部分)

header = struct.pack(">BI", status, len(body))
#按照网上的提供的办法增加对BODY的处理
if (type(body) is str):
 body = body.encode()
self._trans.write(header + body)
self._trans.flush()

经过以上步骤,大家应该可以连接Hive库查询数据,应该是不存在什么问题了。

最后总结一下,连接Hadoop数据库中各种依赖包,请大家仔细核对一下依赖包(最好是依赖包相同,也就是不多不少[我说的是相关的包],这样真的可以避免很多问题的出现)

序号 包名 版本号 安装命令行
1 pure_sasl 0.5.1 pip install pure_sasl==0.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
2 thrift 0.9.3 pip install thrift==0.9.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
3 bitarray 0.8.3 pip install bitarray==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
4 thrift_sasl 0.2.1 pip install thrift_sasl==0.2.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
5 thriftpy 0.3.9 pip install thriftpy==0.3.9 -i https://pypi.tuna.tsinghua.edu.cn/simple
6 impyla 0.14.1 pip install impyla==0.14.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

建议按顺序安装,我这边之前有依赖包的问题,但是最终我是通过conda进行安装的。
其中在安装thriftpy、thrift_sasl、impyla报的时候报错,想到自己有conda,直接使用conda install,会自动下载依赖的包,如下所示(供没有conda环境的同学参考)

package build size
ply-3.11 py37_0 80 KB
conda-4.6.1 py37_0 1.7 MB
thriftpy-0.3.9 py37h1de35cc_2 171 KB

祝您好运!如果在实际过程中还是遇到各种各样的问题,请你留言。

最后有一点提示:

SQL里面不要带分号,否则会报错。但是这个就不是环境问题了。报错如下:

impala.error.HiveServer2Error: Error while compiling statement: FAILED: ParseException line 2:83 cannot recogniz

到此这篇关于Python连接Hadoop数据中遇到的各种坑(汇总)的文章就介绍到这了,更多相关Python连接Hadoop内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 用python + hadoop streaming 分布式编程(一) -- 原理介绍,样例程序与本地调试

    MapReduce与HDFS简介 什么是Hadoop? Google为自己的业务需要提出了编程模型MapReduce和分布式文件系统Google File System,并发布了相关论文(可在Google Research的网站上获得: GFS . MapReduce). Doug Cutting和Mike Cafarella在开发搜索引擎Nutch时对这两篇论文做了自己的实现,即同名的MapReduce和HDFS,合起来就是Hadoop. MapReduce的Data flow如下图,原始数据

  • Hadoop中的Python框架的使用指南

    最近,我加入了Cloudera,在这之前,我在计算生物学/基因组学上已经工作了差不多10年.我的分析工作主要是利用Python语言和它很棒的科学计算栈来进行的.但Apache Hadoop的生态系统大部分都是用Java来实现的,也是为Java准备的,这让我很恼火.所以,我的头等大事变成了寻找一些Python可以用的Hadoop框架. 在这篇文章里,我会把我个人对这些框架的一些无关科学的看法写下来,这些框架包括: Hadoop流 mrjob dumbo hadoopy pydoop 其它 最终,在

  • 让python在hadoop上跑起来

    本文实例讲解的是一般的hadoop入门程序"WordCount",就是首先写一个map程序用来将输入的字符串分割成单个的单词,然后reduce这些单个的单词,相同的单词就对其进行计数,不同的单词分别输出,结果输出每一个单词出现的频数. 注意:关于数据的输入输出是通过sys.stdin(系统标准输入)和sys.stdout(系统标准输出)来控制数据的读入与输出.所有的脚本执行之前都需要修改权限,否则没有执行权限,例如下面的脚本创建之前使用"chmod +x mapper.py&

  • Python连接Hadoop数据中遇到的各种坑(汇总)

    最近准备使用Python+Hadoop+Pandas进行一些深度的分析与机器学习相关工作.(当然随着学习过程的进展,现在准备使用Python+Spark+Hadoop这样一套体系来搭建后续的工作环境),当然这是后话. 但是这项工作首要条件就是将Python与Hadoop进行打通,本来认为很容易的一项工作,没有想到竟然遇到各种坑,花费了整整半天时间.后来也在网上看到大家在咨询相同的问题,但是真正解决这个问题的帖子又几乎没有,所以现在将Python连接Hadoop数据库过程中遇到的各种坑进行一个汇总

  • python 操作mysql数据中fetchone()和fetchall()方式

    fetchone() 返回单个的元组,也就是一条记录(row),如果没有结果 则返回 None fetchall() 返回多个元组,即返回多个记录(rows),如果没有结果 则返回 () 需要注明:在MySQL中是NULL,而在Python中则是None 补充知识:python之cur.fetchall与cur.fetchone提取数据并统计处理 数据库中有一字段type_code,有中文类型和中文类型编码,现在对type_code字段的数据进行统计处理,编码对应的字典如下: {'ys4ng35

  • python去除删除数据中\u0000\u0001等unicode字符串的代码

    py文件为utf-8格式 #!/usr/bin/env python # -*- coding:utf-8 -*- a = "system\u0000" b = re.sub(u'\u0000', "", a) print(b) ## b="system" 补充知识:Python中,如何将反斜杠u类型(\uXXXX)的字符串,转换为对应的unicode的字符 [背景] 类似于: \u3232\u6674 的字符串,转换为对应的unicode字符.

  • python mongo 向数据中的数组类型新增数据操作

    我就废话不多说了,大家还是直接看图吧~ 补充知识:pymongo插入数据时更新和不更新的使用 (1)update的setOnInsert 当该key不存在的时候执行插入操作,当存在的时候则不管,可以使用setOnInsert db.test.update({'_id': 'id'}, {'$setOnInsert': {'a': 'a'}, true) 当id存在的时候,忽略setOnInsert. (2)update的set 当key不存在的时候执行插入操作,当存在的时候更新除key以外的se

  • python处理json数据中的中文

    python中自带了处理python的模块,使用时候直接import json即可. 使用loads方法即可将json字符串转换成python对象,对应关系如下: JSON     Python object   dict array    list string   unicode number   (int) int, long number   (real) float true     True false    False null     None 但在使用json模块的时候需要注意

  • 如何利用Python连接MySQL数据库实现数据储存

    目录 介绍 Python连接MySQL实现数据储存 总结 介绍 MySQL是一个关系型数据库,MySQL由于性能高.成本低.可靠性好,已经成为最流行的开源数据库.最开始由瑞典的MySQL AB公司开发,后来被甲骨文公司(Oracle)收购. 如何利用Python连接MySQL数据库实现数据储存,下面我们将着重介绍. Python连接MySQL实现数据储存 首先我们需要准备Python的pymysql模块,MySQL数据库(这个自行网上找教学安装),Navicat Premium 15数据库工具(

  • Python 抓取数据存储到Redis中的操作

    redis是一个key-value存储结构.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set 有序集合)和hash(哈希类型),数据存储如下图分析 为了分别为ID存入多个键值对,此次仅对Hash数据进行操作,例子如下 import os,sys import requests import bs4 import redis #连接Redis r = redis.Redis(host='127

  • python连接mysql数据库并读取数据的实现

    1.安装pymysql包 pip install pymysql 注: MySQLdb只支持python2,pymysql支持python3 2.连接数据 import pymysql import pandas as pd from pandas import DataFrame as df conn = pymysql.Connect( host = 'IP地址', port = 端口号, user = '用户名', passwd = '用户密码', db = '数据库名称', charse

  • Python批量删除mysql中千万级大量数据的脚本分享

    场景描述 线上mysql数据库里面有张表保存有每天的统计结果,每天有1千多万条,这是我们意想不到的,统计结果咋有这么多.运维找过来,磁盘占了200G,最后问了运营,可以只保留最近3天的,前面的数据,只能删了.删,怎么删? 因为这是线上数据库,里面存放有很多其它数据表,如果直接删除这张表的数据,肯定不行,可能会对其它表有影响.尝试每次只删除一天的数据,还是卡顿的厉害,没办法,写个Python脚本批量删除吧. 具体思路是: 每次只删除一天的数据: 删除一天的数据,每次删除50000条: 一天的数据删

  • IDEA 中使用 Big Data Tools 连接大数据组件

    目录 简介 安装 Big Data Tools 插件 Flink 配置(不推荐) Kafka 配置(推荐) HDFS 配置(推荐) 总结 简介 Big Data Tools 插件可用于 Intellij Idea 2019.2 及以后的版本.它提供了使用 Zeppelin,AWS S3,Spark,Google Cloud Storage,Minio,Linode,数字开放空间,Microsoft Azure 和 Hadoop 分布式文件系统(HDFS)来监视和处理数据的特定功能. 下面来看一下

随机推荐