springboot整合curator实现分布式锁过程

目录
  • springboot curator实现分布式锁
    • 理论篇:
    • 实操篇:
  • 项目实际应用中分布式锁介绍
    • 锁的介绍
    • 悲观锁-数据库锁
    • 悲观锁-缓存锁
    • 分布式锁—zookeeper

springboot curator实现分布式锁

理论篇:

Curator是Netflix开源的一套ZooKeeper客户端框架. Netflix在使用ZooKeeper的过程中发现ZooKeeper自带的客户端太底层, 应用方在使用的时候需要自己处理很多事情, 于是在它的基础上包装了一下, 提供了一套更好用的客户端框架. Netflix在用ZooKeeper的过程中遇到的问题, 我们也遇到了, 所以开始研究一下, 首先从他在github上的源码, wiki文档以及Netflix的技术blog入手.

看完官方的文档之后, 发现Curator主要解决了三类问题:

  • 封装ZooKeeper client与ZooKeeper server之间的连接处理;
  • 提供了一套Fluent风格的操作API;
  • 提供ZooKeeper各种应用场景(recipe, 比如共享锁服务, 集群领导选举机制)的抽象封装.

Curator列举的ZooKeeper使用过程中的几个问题 

  • 初始化连接的问题: 在client与server之间握手建立连接的过程中, 如果握手失败, 执行所有的同步方法(比如create, getData等)将抛出异常
  • 自动恢复(failover)的问题: 当client与一台server的连接丢失,并试图去连接另外一台server时, client将回到初始连接模式
  • session过期的问题: 在极端情况下, 出现ZooKeeper session过期, 客户端需要自己去监听该状态并重新创建ZooKeeper实例 .
  • 对可恢复异常的处理:当在server端创建一个有序ZNode, 而在将节点名返回给客户端时崩溃, 此时client端抛出可恢复的异常, 用户需要自己捕获这些异常并进行重试
  • 使用场景的问题:Zookeeper提供了一些标准的使用场景支持, 但是ZooKeeper对这些功能的使用说明文档很少, 而且很容易用错. 在一些极端场景下如何处理, zk并没有给出详细的文档说明. 比如共享锁服务, 当服务器端创建临时顺序节点成功, 但是在客户端接收到节点名之前挂掉了, 如果不能很好的处理这种情况, 将导致死锁.

Curator主要从以下几个方面降低了zk使用的复杂性: 

  • 重试机制:提供可插拔的重试机制, 它将给捕获所有可恢复的异常配置一个重试策略, 并且内部也提供了几种标准的重试策略(比如指数补偿).
  • 连接状态监控: Curator初始化之后会一直的对zk连接进行监听, 一旦发现连接状态发生变化, 将作出相应的处理.
  • zk客户端实例管理:Curator对zk客户端到server集群连接进行管理. 并在需要的情况, 重建zk实例, 保证与zk集群的可靠连接
  • 各种使用场景支持:Curator实现zk支持的大部分使用场景支持(甚至包括zk自身不支持的场景), 这些实现都遵循了zk的最佳实践, 并考虑了各种极端情况.

Curator通过以上的处理, 让用户专注于自身的业务本身, 而无需花费更多的精力在zk本身.

实操篇:

CuratorFrameworkFactory类提供了两个方法, 一个工厂方法newClient, 一个构建方法build. 使用工厂方法newClient可以创建一个默认的实例, 而build构建方法可以对实例进行定制. 当CuratorFramework实例构建完成, 紧接着调用start()方法, 在应用结束的时候, 需要调用close()方法.  CuratorFramework是线程安全的. 在一个应用中可以共享同一个zk集群的CuratorFramework.

核心对象CuratorFramework的创建如下:

RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000,3);
CuratorFramework client = CuratorFrameworkFactory.builder()
                                      .connectString("")
                                      .sessionTimeoutMs(5000)
                                      .connectionTimeoutMs(5000)
                                      .retryPolicy(retryPolicy)
                                      .build();
client.start();

需要使用分布式锁的地方,代码如下:

String lockOn= "test";
InterProcessMutex mutex = new InterProcessMutex(curatorFramework,lockOn);
boolean locked =mutex.acquire(0,TimeUnit.SECONDS);
//finally部分  
mutex.release();

分布式锁常用于定时任务,使用自定义注解,使用spring aspect around, 在真正的代码执行之前尝试获取锁,获取不到直接退出,获取到锁的,执行具体业务,代码如下:

@Aspect
public class DistributedLockAspect{
    @Pointcut("@annotation(com.**.**.DistributedLock")
    public void methodAspect(){};  
    
    @Around("methodAspect()")
    public Object execute(ProceedingJoinPoint joinPoint) throws Exception{
    
    String lockPath = "/opt/zookeeper/lock";
    InterProcessMutex mutex = new InterProcessMutex(cruatorFramework,lockPath);
    try{
       boolean locked = mutex.acquire(0,TimeUnit.SECONDS);
       if(!locked){
          return null;
      }else{
        return joinPoint.proceed();
      }
   }catch(Exception e){
       e.printStackTrace();
   }finally{
       mutex.release();
   }
 }
} 

自定义注解:

 @Target(ElementType.METHOD)
 @Retention(RetentionPolicy.RUNTIME)
 public @interface DistributedLock{
    String lockPath();  
 }

注意事项:

1.CuratorFramework对象建议在应用中做单例处理,在具体使用处 注入使用, 并在应用结束前销毁,代码如下:

@Configration
public class CuratorConfigration{
    @Bean    
    public CuratorFramework initCuratorFramework(){
        //忽略 
       // 参照前面 CuratorFramework 对象创建部分
    }    
}

2.在aspect部分将curatorFramework对象进行关闭

@PreDestroy
public void destroy(){
   CloseableUtils.closeQuietly(curatorFramework);
}

项目实际应用中分布式锁介绍

锁的介绍

1、悲观锁

顾名思义,很悲观,就是每次拿数据的时候都认为别的线程会修改数据,所以在每次拿的时候都会给数据上锁。上锁之后,当别的线程想要拿数据时,就会阻塞,直到给数据上锁的线程将事务提交或者回滚。传统的关系型数据库里就用到了很多这种锁机制,比如行锁,表锁,共享锁,排他锁等,都是在做操作之前先上锁。

2、行锁

通过select for update语句给sid = 1的数据行上了锁

3、表锁

select * from student for update;

4、页锁

行锁锁指定行,表锁锁整张表,页锁是折中实现,即一次锁定相邻的一组记录。

5、共享锁

共享锁又称为读锁,一个线程给数据加上共享锁后,其他线程只能读数据,不能修改。

6、排他锁

排他锁又称为写锁,和共享锁的区别在于,其他线程既不能读也不能修改。

7、乐观锁

乐观锁其实不会上锁。顾名思义,很乐观,它默认别的线程不会修改数据,所以不会上锁。只是在更新前去判断别的线程在此期间有没有修改数据,如果修改了,会交给业务层去处理。

  • 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。
  • 在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。有的时候,我们需要保证一个方法在同一时间内只能被同一个线程执行。在单机环境中,Java中其实提供了很多并发处理相关的API,但是这些API在分布式场景中就无能为力了。也就是说单纯的Java Api并不能提供分布式锁的能力。所以针对分布式锁的实现目前有多种方案:

1、基于数据库实现分布式锁

2、基于缓存(redis,memcached)实现分布式锁

3、基于Zookeeper实现分布式锁

4、在分析这几种实现方案之前我们先来想一下,我们需要的分布式锁应该是怎么样的?(这里以方法锁为例,资源锁同理)

可以保证在分布式部署的应用集群中,同一个方法在同一时间只能被一台机器上的一个线程执行。

  • 这把锁要是一把可重入锁(避免死锁)
  • 这把锁最好是一把阻塞锁(根据业务需求考虑要不要这条)
  • 有高可用的获取锁和释放锁功能
  • 获取锁和释放锁的性能要好

悲观锁-数据库锁

借助数据中自带的锁来实现分布式的锁

public boolean lock(){
    connection.setAutoCommit(false)
    while(true){
        try{
            result = select * from methodLock where method_name=xxx for update;
            if(result==null){
                return true;
            }
        }catch(Exception e){
 
        }
        sleep(1000);
    }
    return false;
}

在查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁。当某条记录被加上排他锁之后,其他线程无法再在该行记录上增加排他锁。

我们可以认为获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,再通过以下方法解锁:

public void unlock(){
    connection.commit();
}

通过connection.commit()操作来释放锁。

这种方法可以有效的解决上面提到的无法释放锁和阻塞锁的问题。

阻塞锁,for update语句会在执行成功后立即返回,在执行失败时一直处于阻塞状态,直到成功。

锁定之后服务宕机,无法释放,使用这种方式,服务宕机之后数据库会自己把锁释放掉。

但是还是无法直接解决数据库单点和可重入问题。

悲观锁-缓存锁

相比较于基于数据库实现分布式锁的方案来说,基于缓存来实现在性能方面会表现的更好一点。而且很多缓存是可以集群部署的,可以解决单点问题。

redis2.6之后,SET命令支持超时和key存在检查,这是一个原子操作

缓存锁优势是性能出色,劣势就是由于数据在内存中,一旦缓存服务宕机,锁数据就丢失了。像redis自带复制功能,可以对数据可靠性有一定的保证,但是由于复制也是异步完成的,因此依然可能出现master节点写入锁数据而未同步到slave节点的时候宕机,锁数据丢失问题。

分布式锁—zookeeper

基于zookeeper临时有序节点可以实现的分布式锁。大致思想即为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。

来看下Zookeeper能不能解决前面提到的问题。

  • 锁无法释放:使用Zookeeper可以有效的解决锁无法释放的问题,因为在创建锁的时候,客户端会在ZK中创建一个临时节点,一旦客户端获取到锁之后突然挂掉(Session连接断开),那么这个临时节点就会自动删除掉。其他客户端就可以再次获得锁。
  • 非阻塞锁:使用Zookeeper可以实现阻塞的锁,客户端可以通过在ZK中创建顺序节点,并且在节点上绑定监听器,一旦节点有变化,Zookeeper会通知客户端,客户端可以检查自己创建的节点是不是当前所有节点中序号最小的,如果是,那么自己就获取到锁,便可以执行业务逻辑了。
  • 不可重入:使用Zookeeper也可以有效的解决不可重入的问题,客户端在创建节点的时候,把当前客户端的主机信息和线程信息直接写入到节点中,下次想要获取锁的时候和当前最小的节点中的数据比对一下就可以了。如果和自己的信息一样,那么自己直接获取到锁,如果不一样就再创建一个临时的顺序节点,参与排队。
  • 单点问题:使用Zookeeper可以有效的解决单点问题,ZK是集群部署的,只要集群中有半数以上的机器存活,就可以对外提供服务。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 基于springboot实现redis分布式锁的方法

    在公司的项目中用到了分布式锁,但只会用却不明白其中的规则 所以写一篇文章来记录 使用场景:交易服务,使用redis分布式锁,防止重复提交订单,出现超卖问题 分布式锁的实现方式 基于数据库乐观锁/悲观锁 Redis分布式锁(本文) Zookeeper分布式锁 redis是如何实现加锁的? 在redis中,有一条命令,实现锁 SETNX key value 该命令的作用是将 key 的值设为 value ,当且仅当 key 不存在.若给定的 key 已经存在,则 SETNX不做任何动作.设置成功,返

  • Spring Boot基于数据库如何实现简单的分布式锁

    1.简介 分布式锁的方式有很多种,通常方案有: 基于mysql数据库 基于redis 基于ZooKeeper 网上的实现方式有很多,本文主要介绍的是如果使用mysql实现简单的分布式锁,加锁流程如下图: 其实大致思想如下: 1.根据一个值来获取锁(也就是我这里的tag),如果当前不存在锁,那么在数据库插入一条记录,然后进行处理业务,当结束,释放锁(删除锁). 2.如果存在锁,判断锁是否过期,如果过期则更新锁的有效期,然后继续处理业务,当结束时,释放锁.如果没有过期,那么获取锁失败,退出. 2.数

  • 浅谈Java(SpringBoot)基于zookeeper的分布式锁实现

    通过zookeeper实现分布式锁 1.创建zookeeper的client 首先通过CuratorFrameworkFactory创建一个连接zookeeper的连接CuratorFramework client public class CuratorFactoryBean implements FactoryBean<CuratorFramework>, InitializingBean, DisposableBean { private static final Logger LOGG

  • springboot+zookeeper实现分布式锁的示例代码

    目录 依赖 本地封装 配置 测试代码 JMeter测试 InterProcessMutex内部实现了zookeeper分布式锁的机制,所以接下来我们尝试使用这个工具来为我们的业务加上分布式锁处理的功能 zookeeper分布式锁的特点:1.分布式 2.公平锁 3.可重入 依赖 <dependency> <groupId>org.apache.zookeeper</groupId> <artifactId>zookeeper</artifactId>

  • SpringBoot整合Redis正确的实现分布式锁的示例代码

    前言 最近在做分块上传的业务,使用到了Redis来维护上传过程中的分块编号. 每上传完成一个分块就获取一下文件的分块集合,加入新上传的编号,手动接口测试下是没有问题的,前端通过并发上传调用就出现问题了,并发的get再set,就会存在覆盖写现象,导致最后的分块数据不对,不能触发分块合并请求. 遇到并发二话不说先上锁,针对执行代码块加了一个JVM锁之后问题就解决了. 仔细一想还是不太对,项目是分布式部署的,做了负载均衡,一个节点的代码被锁住了,请求轮询到其他节点还是可以进行覆盖写,并没有解决到问题啊

  • springboot整合curator实现分布式锁过程

    目录 springboot curator实现分布式锁 理论篇: 实操篇: 项目实际应用中分布式锁介绍 锁的介绍 悲观锁-数据库锁 悲观锁-缓存锁 分布式锁—zookeeper springboot curator实现分布式锁 理论篇: Curator是Netflix开源的一套ZooKeeper客户端框架. Netflix在使用ZooKeeper的过程中发现ZooKeeper自带的客户端太底层, 应用方在使用的时候需要自己处理很多事情, 于是在它的基础上包装了一下, 提供了一套更好用的客户端框架

  • SpringBoot整合Redisson实现分布式锁

    目录 一.添加依赖 二.redis配置文件 三.新建配置类 四.使用分布式锁 可重入锁 读写锁 信号量(Semaphore) 闭锁(CountDownLatch) Redisson是架设在redis基础上的一个Java驻内存数据网格(In-Memory Data Grid).充分的利用了Redis键值数据库提供的一系列优势,基于Java实用工具包中常用接口,为使用者提供了一系列具有分布式特性的常用工具类.使得原本作为协调单机多线程并发程序的工具包获得了协调分布式多机多线程并发系统的能力,大大降低

  • SpringBoot基于Redis的分布式锁实现过程记录

    目录 一.概述 二.环境搭建 三.模拟一个库存扣减的场景 四.总结 一.概述 什么是分布式锁 在单机环境中,一般在多并发多线程场景下,出现多个线程去抢占一个资源,这个时候会出现线程同步问题,造成执行的结果没有达到预期.我们会用线程间加锁的方式,比如synchronized,lock,volatile,以及JVM并发包中提供的其他工具类去处理此问题. 但是随着技术的发展,分布式系统的出现,各个应用服务都部署在不同节点,由各自的JVM去操控,资源已经不是在 线程 之间的共享,而是变成了 进程 之间的

  • Spring Boot整合Zookeeper实现分布式锁的场景分析

    目录 一.Java当中关于锁的概念 1.1.什么是锁 1.2.锁的使用场景 1.3.什么是分布式锁 1.4.分布式锁的使用场景 二.zk实现分布式锁 2.1.zk中锁的种类: 2.2.zk如何上读锁 2.3.zk如何上写锁 2.4.⽺群效应 三.springboot整合分布式锁 温馨提示:本篇文章要求掌握zk的数据结构,以及临时序号节点! zk实现分布式锁完全是依靠zk节点类型当中的临时序号节点来实现的 一.Java当中关于锁的概念 1.1.什么是锁 锁是用来控制多个线程访问共享资源的方式,一般

  • springboot 集成redission 以及分布式锁的使用详解

    目录 springboot集成redission及分布式锁的使用 1.引入jar包 2.增加Configuration类 3.使用redission分布式锁 Springboot整合Redisson 锁 一.依赖 二.配置文件 三.锁的使用 四.分布式秒杀 五.redis锁 单机版可用,分布式用Redisson springboot集成redission及分布式锁的使用 1.引入jar包 <dependency> <groupId>org.redisson</groupId&

  • springboot整合jquery和bootstrap框架过程图解

    这篇文章主要介绍了springboot整合jquery和bootstrap框架过程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 <dependency> <groupId>org.webjars</groupId> <artifactId>jquery</artifactId> <version>3.4.1</version> </dependency>

  • SpringBoot整合aop面向切面编程过程解析

    这篇文章主要介绍了SpringBoot整合aop面向切面编程过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是Spring框架中的一个重要内容,它通过对既有程序定义一个切入点,然后在其前后切入不同的执行内容,比如常见的有:打开数据库连接/关闭数据库连接.打开事务/关闭事务.记录日

  • 详解IDEA中SpringBoot整合Servlet三大组件的过程

    Spring MVC整合 SpringBoot提供为整合MVC框架提供的功能特性 内置两个视图解析器:ContentNegotiatingViewResolver和BeanNameViewResolver 支持静态资源以及WebJars 自动注册了转换器和格式化器 支持Http消息转换器 自动注册了消息代码解析器 支持静态项目首页index.html 支持定制应用图标favicon.ico 自动初始化Web数据绑定器:ConfigurableWebBindingInitializer Sprin

  • Springboot整合Freemarker的实现详细过程

    基本配置.测试 1.导入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-freemarker</artifactId> </dependency> 2.准备一个Freemarker模板(.ftl) 3.注入Configuration对象(freemarker.template包下) 4.生成商品详情模

随机推荐