C++虚函数表的原理与使用解析

目录
  • 前言
  • 1.虚函数表
  • 2.一般继承(无虚函数覆盖)
  • 3.一般继承(有虚函数覆盖)
  • 4.多重继承(无虚函数覆盖)
  • 5.多重继承(有虚函数覆盖)
  • 6.安全性
    • 6.1 通过父类型的指针访问子类自己的虚函数
    • 6.2 访问non-public的虚函数
  • 7.结束语
    • 7.1 VC中查看虚函数表
    • 7.2 例程

前言

C++中的虚函数的作用主要是实现了多态的机制。关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数。这种技术可以让父类的指针有“多种形态”,这是一种泛型技术。所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法。比如:模板技术,RTTI技术,虚函数技术,要么是试图做到在编译时决议,要么试图做到运行时决议。

关于虚函数的使用方法,我在这里不做过多的阐述。大家可以看看相关的C++的书籍。在这篇文章中,我只想从虚函数的实现机制上面为大家 一个清晰的剖析。

当然,相同的文章在网上也出现过一些了,但我总感觉这些文章不是很容易阅读,大段大段的代码,没有图片,没有详细的说明,没有比较,没有举一反三。不利于学习和阅读,所以这是我想写下这篇文章的原因。也希望大家多给我提意见。

言归正传,让我们一起进入虚函数的世界。

1.虚函数表

对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。简称为V-Table。在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。

这里我们着重看一下这张虚函数表。C++的编译器应该是保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证取到虚函数表的有最高的性能——如果有多层继承或是多重继承的情况下)。 这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。

听我扯了那么多,我可以感觉出来你现在可能比以前更加晕头转向了。 没关系,下面就是实际的例子,相信聪明的你一看就明白了。

假设我们有这样的一个类:

class Base {
     public:
            virtual void f() { cout << "Base::f" << endl; }
            virtual void g() { cout << "Base::g" << endl; }
            virtual void h() { cout << "Base::h" << endl; }

};

按照上面的说法,我们可以通过Base的实例来得到虚函数表。 下面是实际例程:

typedef void(*Fun)(void);

Base b;

Fun pFun = NULL;

cout << "虚函数表地址:" << (int*)(&b) << endl;
cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) << endl;

// Invoke the first virtual function
pFun = (Fun)*((int*)*(int*)(&b));
pFun();

实际运行经果如下:(Windows XP+VS2003, Linux 2.6.22 + GCC 4.1.3)

虚函数表地址:0012FED4
虚函数表 — 第一个函数地址:0044F148
Base::f

通过这个示例,我们可以看到,我们可以通过强行把&b转成int *,取得虚函数表的地址,然后,再次取址就可以得到第一个虚函数的地址了,也就是Base::f(),这在上面的程序中得到了验证(把int* 强制转成了函数指针)。通过这个示例,我们就可以知道如果要调用Base::g()和Base::h(),其代码如下:

(Fun)*((int*)*(int*)(&b)+0);  // Base::f()
(Fun)*((int*)*(int*)(&b)+1);  // Base::g()
(Fun)*((int*)*(int*)(&b)+2);  // Base::h()

这个时候你应该懂了吧。什么?还是有点晕。也是,这样的代码看着太乱了。没问题,让我画个图解释一下。如下所示:

注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“/0”一样,其标志了虚函数表的结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。

下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。没有覆盖父类的虚函数是毫无意义的。我之所以要讲述没有覆盖的情况,主要目的是为了给一个对比。在比较之下,我们可以更加清楚地知道其内部的具体实现。

2.一般继承(无虚函数覆盖)

下面,再让我们来看看继承时的虚函数表是什么样的。假设有如下所示的一个继承关系:

请注意,在这个继承关系中,子类没有重载任何父类的函数。那么,在派生类的实例中,其虚函数表如下所示:

对于实例:Derive d; 的虚函数表如下:

我们可以看到下面几点:

1)虚函数按照其声明顺序放于表中。

2)父类的虚函数在子类的虚函数前面。

我相信聪明的你一定可以参考前面的那个程序,来编写一段程序来验证。

3.一般继承(有虚函数覆盖)

覆盖父类的虚函数是很显然的事情,不然,虚函数就变得毫无意义。下面,我们来看一下,如果子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,我们有下面这样的一个继承关系。

为了让大家看到被继承过后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。那么,对于派生类的实例,其虚函数表会是下面的一个样子:

我们从表中可以看到下面几点,

1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。

2)没有被覆盖的函数依旧。

这样,我们就可以看到对于下面这样的程序,

Base *b = new Derive();

b->f();

由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。这就实现了多态。

4.多重继承(无虚函数覆盖)

下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。注意:子类并没有覆盖父类的函数。

对于子类实例中的虚函数表,是下面这个样子:

我们可以看到:

1) 每个父类都有自己的虚表。

2) 子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的)

这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。

5.多重继承(有虚函数覆盖)

下面我们再来看看,如果发生虚函数覆盖的情况。

下图中,我们在子类中覆盖了父类的f()函数。

下面是对于子类实例中的虚函数表的图:

我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,我们就可以任一静态类型的父类来指向子类,并调用子类的f()了。如:

Derive d;
Base1 *b1 = &d;
Base2 *b2 = &d;
Base3 *b3 = &d;
b1->f(); //Derive::f()
b2->f(); //Derive::f()
b3->f(); //Derive::f()

b1->g(); //Base1::g()
b2->g(); //Base2::g()
b3->g(); //Base3::g()

6.安全性

每次写C++的文章,总免不了要批判一下C++。这篇文章也不例外。通过上面的讲述,相信我们对虚函数表有一个比较细致的了解了。水可载舟,亦可覆舟。下面,让我们来看看我们可以用虚函数表来干点什么坏事吧。

6.1 通过父类型的指针访问子类自己的虚函数

我们知道,子类没有重载父类的虚函数是一件毫无意义的事情。因为多态也是要基于函数重载的。虽然在上面的图中我们可以看到Base1的虚表中有Derive的虚函数,但我们根本不可能使用下面的语句来调用子类的自有虚函数:

Base1 *b1 = new Derive();
b1->f1();  //编译出错

任何妄图使用父类指针想调用子类中的未覆盖父类的成员函数的行为都会被编译器视为非法,所以,这样的程序根本无法编译通过。但在运行时,我们可以通过指针的方式访问虚函数表来达到违反C++语义的行为。(关于这方面的尝试,通过阅读后面附录的代码,相信你可以做到这一点)

6.2 访问non-public的虚函数

另外,如果父类的虚函数是private或是protected的,但这些非public的虚函数同样会存在于虚函数表中,所以,我们同样可以使用访问虚函数表的方式来访问这些non-public的虚函数,这是很容易做到的。

如:

class Base {
    private:
            virtual void f() { cout << "Base::f" << endl; }

};

class Derive : public Base{

};

typedef void(*Fun)(void);

void main() {
    Derive d;
    Fun  pFun = (Fun)*((int*)*(int*)(&d)+0);
    pFun();
}

7.结束语

C++这门语言是一门Magic的语言,对于程序员来说,我们似乎永远摸不清楚这门语言背着我们在干了什么。需要熟悉这门语言,我们就必需要了解C++里面的那些东西,需要去了解C++中那些危险的东西。不然,这是一种搬起石头砸自己脚的编程语言。

7.1 VC中查看虚函数表

我们可以在VC的IDE环境中的Debug状态下展开类的实例就可以看到虚函数表了(并不是很完整的)

7.2 例程

下面是一个关于多重继承的虚函数表访问的例程:

#include <iostream>
using namespace std;

class Base1 {
public:
            virtual void f() { cout << "Base1::f" << endl; }
            virtual void g() { cout << "Base1::g" << endl; }
            virtual void h() { cout << "Base1::h" << endl; }

};

class Base2 {
public:
            virtual void f() { cout << "Base2::f" << endl; }
            virtual void g() { cout << "Base2::g" << endl; }
            virtual void h() { cout << "Base2::h" << endl; }
};

class Base3 {
public:
            virtual void f() { cout << "Base3::f" << endl; }
            virtual void g() { cout << "Base3::g" << endl; }
            virtual void h() { cout << "Base3::h" << endl; }
};

class Derive : public Base1, public Base2, public Base3 {
public:
            virtual void f() { cout << "Derive::f" << endl; }
            virtual void g1() { cout << "Derive::g1" << endl; }
};

typedef void(*Fun)(void);

int main()
{
            Fun pFun = NULL;

            Derive d;
            int** pVtab = (int**)&d;

            //Base1's vtable
            //pFun = (Fun)*((int*)*(int*)((int*)&d+0)+0);
            pFun = (Fun)pVtab[0][0];
            pFun();

            //pFun = (Fun)*((int*)*(int*)((int*)&d+0)+1);
            pFun = (Fun)pVtab[0][1];
            pFun();

            //pFun = (Fun)*((int*)*(int*)((int*)&d+0)+2);
            pFun = (Fun)pVtab[0][2];
            pFun();

            //Derive's vtable
            //pFun = (Fun)*((int*)*(int*)((int*)&d+0)+3);
            pFun = (Fun)pVtab[0][3];
            pFun();

            //The tail of the vtable
            pFun = (Fun)pVtab[0][4];
            cout<<pFun<<endl;

            //Base2's vtable
            //pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);
            pFun = (Fun)pVtab[1][0];
            pFun();

            //pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);
            pFun = (Fun)pVtab[1][1];
            pFun();

            pFun = (Fun)pVtab[1][2];
            pFun();

            //The tail of the vtable
            pFun = (Fun)pVtab[1][3];
            cout<<pFun<<endl;

            //Base3's vtable
            //pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);
            pFun = (Fun)pVtab[2][0];
            pFun();

            //pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);
            pFun = (Fun)pVtab[2][1];
            pFun();

            pFun = (Fun)pVtab[2][2];
            pFun();

            //The tail of the vtable
            pFun = (Fun)pVtab[2][3];
            cout<<pFun<<endl;

            return 0;
}

注:本文年代久远,所有的示例都是在32位机上跑的。

到此这篇关于C++虚函数表的原理与使用解析的文章就介绍到这了,更多相关C++虚函数表内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 虚函数表-C++多态的实现原理解析

    参考:http://c.biancheng.net/view/267.html 1.说明 我们都知道多态指的是父类的指针在运行中指向子类,那么它的实现原理是什么呢?答案是虚函数表 在 关于virtual 一文中,我们详细了解了C++多态的使用方式,我们知道没有 virtual 关键子就没法使用多态 2.虚函数表 我们看一下下面的代码 class A { public: int i; virtual void func() { cout << "A func" <<

  • C++ 虚函数表图文解析

    一.前言 一直以来,对虚函数的理解仅仅是,在父类中定义虚函数,子类中可以重写该虚函数,并且父类指针可以指向子类对象,调用子类的虚函数(多态).在读研阶段经历的几个项目中,自己所写的类中并没有用到虚函数,对虚函数这个东西的强大之处并没有太多体会.最近,学了设计模式中的简单工厂模式,对多态有了具体的认识.于是,补了补多态.虚函数.虚函数表相关的知识,参考相关博客,加上自己的理解,整理了这篇博文. 二.含有虚函数类的内存模型 以下面的类为例(32位平台下): class Father { public

  • 聊一聊C++虚函数表的问题

    之前只是看过C++虚函数表相关介绍,今天有空就来写代码研究一下. 面向对象的编程语言有3大特性:封装.继承和多态.C++是面向对象的语言(与C语言主要区别),所以C++也拥有多态的特性. C++中多态分为两种:静态多态和动态多态. 静态多态为编译器在编译期间就可以根据函数名和参数等信息确定调用某个函数.静态多态主要体现为函数重载和运算符重载. 函数重载即类中定义多个同名成员函数,函数参数类型.参数个数和返回值不完全相同,编译器编译后这些同名函数的函数名会不一样,也就是说编译期间就确定了调用某个函

  • C++虚函数表深入研究

    目录 探索虚函数表结构 继承基类重写虚函数 多基类继承 虚函数表 寻找被覆盖的虚函数 总结 面向对象的编程语言有3大特性:封装.继承和多态.C++是面向对象的语言(与C语言主要区别),所以C++也拥有多态的特性. C++中多态分为两种:静态多态和动态多态. 静态多态为编译器在编译期间就可以根据函数名和参数等信息确定调用某个函数.静态多态主要体现为函数重载和运算符重载. 函数重载即类中定义多个同名成员函数,函数参数类型.参数个数和返回值不完全相同,编译器编译后这些同名函数的函数名会不一样,也就是说

  • C++虚函数表实例分析

    多态是C++面向对象程序设计的一个重要特性.以前看到虚函数觉得很神奇,为什么就能实现多态了呢.最初的时候曾设想,要实现运行时多态,应该让对象的某个部分始终指向一个固定的地址,子类继承的时候,就修改这个地址的内容.这样,父类和子类都是到同一个固定地址去读取内容,在运行时就能表现不同行为. 在看了<深度探索c++对象模型>之后,发现思路是类似的.在对象中,有一个指针指向一张虚函数表,里面按照次序存放了每一个虚函数,当子类继承的时候,即到虚函数表的指定位置去修改函数地址.当我们通过父类指针来操作一个

  • C++虚函数表的原理与使用解析

    目录 前言 1.虚函数表 2.一般继承(无虚函数覆盖) 3.一般继承(有虚函数覆盖) 4.多重继承(无虚函数覆盖) 5.多重继承(有虚函数覆盖) 6.安全性 6.1 通过父类型的指针访问子类自己的虚函数 6.2 访问non-public的虚函数 7.结束语 7.1 VC中查看虚函数表 7.2 例程 前言 C++中的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数.这种技术可以让父类的指针有“多种形态”,这是一种泛

  • C++ 中的虚函数表及虚函数执行原理详解

    为了实现虚函数,C++ 使用了虚函数表来达到延迟绑定的目的.虚函数表在动态/延迟绑定行为中用于查询调用的函数. 尽管要描述清楚虚函数表的机制会多费点口舌,但其实其本身还是比较简单的. 首先,每个包含虚函数的类(或者继承自的类包含了虚函数)都有一个自己的虚函数表.这个表是一个在编译时确定的静态数组.虚函数表包含了指向每个虚函数的函数指针以供类对象调用. 其次,编译器还在基类中定义了一个隐藏指针,我们称为 *__vptr,*__vptr 是在类实例创建时自动设置的,以指向类的虚函数表.*__vptr

  • c++虚函数与虚函数表原理

    目录 1.什么是虚函数? 2.虚函数会影响类的内存 3.了解虚函数表--->通过虚函数表的指针去访问数据 4.虚函数声明 1.什么是虚函数? 用virtual 修饰的成员函数叫虚函数 小知识: 没有虚构造函数        不写虚函数,没有默认的虚函数 普通函数不影响类的内存: class MM { public: void print() { cout << "普通函数"<< endl; //普通函数不影响类的内存<--->普通函数存在另一段

  • C++虚函数表与类的内存分布深入分析理解

    目录 不可定义为虚函数的函数 将析构函数定义为虚函数的作用 虚函数表原理 继承关系中虚函数表结构 多重继承的虚函数表 多态调用原理 对齐和补齐规则 为什么要有对齐和补齐 资源链接 不可定义为虚函数的函数 类的静态函数和构造函数不可以定义为虚函数: 静态函数的目的是通过类名+函数名访问类的static变量,或者通过对象调用staic函数实现对static成员变量的读写,要求内存中只有一份数据.而虚函数在子类中重写,并且通过多态机制实现动态调用,在内存中需要保存不同的重写版本. 构造函数的作用是构造

  • C++ 类中有虚函数(虚函数表)时 内存分布详解

    虚函数表 对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的.简称为V-Table.在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承.覆盖的问题,保证其容真实反应实际的函数.这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数. 这里我们着重看一下这张虚函数表.C++的编译器应该是

  • C++对象内存分布详解(包括字节对齐和虚函数表)

    1.C++对象的内存分布和虚函数表: C++对象的内存分布和虚函数表注意,对象中保存的是虚函数表指针,而不是虚函数表,虚函数表在编译阶段就已经生成,同类的不同对象中的虚函数指针指向同一个虚函数表,不同类对象的虚函数指针指向不同虚函数表. 2.何时进行动态绑定: (1)每个类对象在被构造时不用去关心是否有其他类从自己派生,也不需要关心自己是否从其他类派生,只要按照一个统一的流程:在自身的构造函数执行之前把自己所属类(即当前构造函数所属的类)的虚函数表的地址绑定到当前对象上(一般是保存在对象内存空间

  • C++虚函数及虚函数表简析

    C++中的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数.这种技术可以让父类的指针有"多种形态",这是一种泛型技术.所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法.比如:模板技术,RTTI技术,虚函数技术,要么是试图做到在编译时决议,要么试图做到运行时决议. 关于虚函数的使用方法,我在这里不做过多的阐述.大家可以看看相关的C++的书籍.在这篇文章中,我只想从虚函数的实现机制上面为大家 一个

  • C++ COM编程之接口背后的虚函数表

    前言 学习C++的人,肯定都知道多态机制:多态就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数.对于多态机制是如何实现的,你有没有想过呢?而COM中的接口就将这一机制运用到了极致,所以,不知道多态机制的人,是永运无法明白COM的.所以,在总结COM时,是非常有必要专门总结一下C++的多态机制是如何实现的. 多态 什么是多态?上面也说了,多态就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数.现在通过代码,让大家切身的体会一下多态: 复制代

  • 浅谈C++对象的内存分布和虚函数表

    c++中一个类中无非有四种成员:静态数据成员和非静态数据成员,静态函数和非静态函数. 1.非静态数据成员被放在每一个对象体内作为对象专有的数据成员. 2.静态数据成员被提取出来放在程序的静态数据区内,为该类所有对象共享,因此只存在一份. 3.静态和非静态成员函数最终都被提取出来放在程序的代码段中并为该类所有对象共享,因此每一个成员函数也只能存在一份代码实体.在c++中类的成员函数都是保存在静态存储区中的 ,那静态函数也是保存在静态存储区中的,他们都是在类中保存同一个惫份. 因此,构成对象本身的只

随机推荐