python实现canny边缘检测

canny边缘检测原理

canny边缘检测共有5部分组成,下边我会分别来介绍。

1 高斯模糊(略)

2 计算梯度幅值和方向。

可选用的模板:soble算子、Prewitt算子、Roberts模板等等;

一般采用soble算子,OpenCV也是如此,利用soble水平和垂直算子与输入图像卷积计算dx、dy:

进一步可以得到图像梯度的幅值:

为了简化计算,幅值也可以作如下近似:

角度为:

如下图表示了中心点的梯度向量、方位角以及边缘方向(任一点的边缘与梯度向量正交) :

θ = θm = arctan(dy/dx)(边缘方向)
α = θ + 90= arctan(dy/dx) + 90(梯度方向)

3、根据角度对幅值进行非极大值抑制

划重点:是沿着梯度方向对幅值进行非极大值抑制,而非边缘方向,这里初学者容易弄混。

例如:3*3区域内,边缘可以划分为垂直、水平、45°、135°4个方向,同样,梯度反向也为四个方向(与边缘方向正交)。因此为了进行非极大值,将所有可能的方向量化为4个方向,如下图:

即梯度方向分别为

α = 90

α = 45

α = 0

α = -45

非极大值抑制即为沿着上述4种类型的梯度方向,比较3*3邻域内对应邻域值的大小:

在每一点上,领域中心 x 与沿着其对应的梯度方向的两个像素相比,若中心像素为最大值,则保留,否则中心置0,这样可以抑制非极大值,保留局部梯度最大的点,以得到细化的边缘。

4、用双阈值算法检测和连接边缘

1选取系数TH和TL,比率为2:1或3:1。(一般取TH=0.3或0.2,TL=0.1);

2 将小于低阈值的点抛弃,赋0;将大于高阈值的点立即标记(这些点为确定边缘 点),赋1或255;

3将小于高阈值,大于低阈值的点使用8连通区域确定(即:只有与TH像素连接时才会被接受,成为边缘点,赋 1或255)

python 实现

import cv2
import numpy as np
m1 = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]])
m2 = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
from matplotlib import pyplot as plt
# 第一步:完成高斯平滑滤波
img = cv2.imread("B9064CF1D57871735CE11A0F368DCF27.jpg", 0)
sobel = cv2.Canny(img, 50, 100)
cv2.namedWindow('5', 0)
cv2.resizeWindow("5", 640, 480)
cv2.imshow("5", sobel) # 角度值灰度图
img = cv2.GaussianBlur(img, (3, 3), 2)
# 第二步:完成一阶有限差分计算,计算每一点的梯度幅值与方向
img1 = np.zeros(img.shape, dtype="uint8") # 与原图大小相同
theta = np.zeros(img.shape, dtype="float") # 方向矩阵原图像大小
img = cv2.copyMakeBorder(img, 1, 1, 1, 1, borderType=cv2.BORDER_REPLICATE)
rows, cols = img.shape
for i in range(1, rows - 1):
for j in range(1, cols - 1):
Gy = [np.sum(m2 * img[i - 1:i + 2, j - 1:j + 2])]
#Gy = (np.dot(np.array([1, 1, 1]), (m2 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))
Gx = [np.sum(m1 * img[i - 1:i + 2, j - 1:j + 2])]
#Gx = (np.dot(np.array([1, 1, 1]), (m1 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))
if Gx[0] == 0:
theta[i - 1, j - 1] = 90
continue
else:
temp = ((np.arctan2(Gy[0], Gx[0])) * 180 / np.pi)+90
if Gx[0] * Gy[0] > 0:
if Gx[0] > 0:
# 第一象线
theta[i - 1, j - 1] = np.abs(temp)
else:
# 第三象线
theta[i - 1, j - 1] = (np.abs(temp) - 180)
if Gx[0] * Gy[0] < 0:
if Gx[0] > 0:
# 第四象线
theta[i - 1, j - 1] = (-1) * np.abs(temp)
else:
# 第二象线
theta[i - 1, j - 1] = 180 - np.abs(temp)

img1[i - 1, j - 1] = (np.sqrt(Gx[0] ** 2 + Gy[0] ** 2))
for i in range(1, rows - 2):
for j in range(1, cols - 2):
if (((theta[i, j] >= -22.5) and (theta[i, j] < 22.5)) or
((theta[i, j] <= -157.5) and (theta[i, j] >= -180)) or
((theta[i, j] >= 157.5) and (theta[i, j] < 180))):
theta[i, j] = 0.0
elif (((theta[i, j] >= 22.5) and (theta[i, j] < 67.5)) or
((theta[i, j] <= -112.5) and (theta[i, j] >= -157.5))):
theta[i, j] = -45.0
elif (((theta[i, j] >= 67.5) and (theta[i, j] < 112.5)) or
((theta[i, j] <= -67.5) and (theta[i, j] >= -112.5))):
theta[i, j] = 90.0
elif (((theta[i, j] >= 112.5) and (theta[i, j] < 157.5)) or
((theta[i, j] <= -22.5) and (theta[i, j] >= -67.5))):
theta[i, j] = 45.0
'''
for i in range(1, rows - 1):
for j in range(1, cols - 1):
Gy = [np.sum(m2 * img[i - 1:i + 2, j - 1:j + 2])]
#Gy = (np.dot(np.array([1, 1, 1]), (m2 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))
Gx = [np.sum(m1 * img[i - 1:i + 2, j - 1:j + 2])]
#Gx = (np.dot(np.array([1, 1, 1]), (m1 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))
if Gx[0] == 0:
theta[i - 1, j - 1] = 90
continue
else:
temp = (np.arctan2(Gy[0], Gx[0])) * 180 / np.pi)
if Gx[0] * Gy[0] > 0:
if Gx[0] > 0:
# 第一象线
theta[i - 1, j - 1] = np.abs(temp)
else:
# 第三象线
theta[i - 1, j - 1] = (np.abs(temp) - 180)
if Gx[0] * Gy[0] < 0:
if Gx[0] > 0:
# 第四象线
theta[i - 1, j - 1] = (-1) * np.abs(temp)
else:
# 第二象线
theta[i - 1, j - 1] = 180 - np.abs(temp)

img1[i - 1, j - 1] = (np.sqrt(Gx[0] ** 2 + Gy[0] ** 2))
for i in range(1, rows - 2):
for j in range(1, cols - 2):
if (((theta[i, j] >= -22.5) and (theta[i, j] < 22.5)) or
((theta[i, j] <= -157.5) and (theta[i, j] >= -180)) or
((theta[i, j] >= 157.5) and (theta[i, j] < 180))):
theta[i, j] = 90.0
elif (((theta[i, j] >= 22.5) and (theta[i, j] < 67.5)) or
((theta[i, j] <= -112.5) and (theta[i, j] >= -157.5))):
theta[i, j] = 45.0
elif (((theta[i, j] >= 67.5) and (theta[i, j] < 112.5)) or
((theta[i, j] <= -67.5) and (theta[i, j] >= -112.5))):
theta[i, j] = 0.0
elif (((theta[i, j] >= 112.5) and (theta[i, j] < 157.5)) or
((theta[i, j] <= -22.5) and (theta[i, j] >= -67.5))):
theta[i, j] = -45.0

'''
# 第三步:进行 非极大值抑制计算
img2 = np.zeros(img1.shape) # 非极大值抑制图像矩阵

for i in range(1, img2.shape[0] - 1):
for j in range(1, img2.shape[1] - 1):
# 0度j不变
if (theta[i, j] == 0.0) and (img1[i, j] == np.max([img1[i, j], img1[i + 1, j], img1[i - 1, j]])):
img2[i, j] = img1[i, j]

if (theta[i, j] == -45.0) and img1[i, j] == np.max([img1[i, j], img1[i - 1, j - 1], img1[i + 1, j + 1]]):
img2[i, j] = img1[i, j]

if (theta[i, j] == 90.0) and img1[i, j] == np.max([img1[i, j], img1[i, j + 1], img1[i, j - 1]]):
img2[i, j] = img1[i, j]

if (theta[i, j] == 45.0) and img1[i, j] == np.max([img1[i, j], img1[i - 1, j + 1], img1[i + 1, j - 1]]):
img2[i, j] = img1[i, j]

# 第四步:双阈值检测和边缘连接
img3 = np.zeros(img2.shape) # 定义双阈值图像
# TL = 0.4*np.max(img2)
# TH = 0.5*np.max(img2)
TL = 50
TH = 100
# 关键在这两个阈值的选择
for i in range(1, img3.shape[0] - 1):
for j in range(1, img3.shape[1] - 1):
if img2[i, j] < TL:
img3[i, j] = 0
elif img2[i, j] > TH:
img3[i, j] = 255
elif ((img2[i + 1, j] < TH) or (img2[i - 1, j] < TH) or (img2[i, j + 1] < TH) or
(img2[i, j - 1] < TH) or (img2[i - 1, j - 1] < TH) or (img2[i - 1, j + 1] < TH) or
(img2[i + 1, j + 1] < TH) or (img2[i + 1, j - 1] < TH)):
img3[i, j] = 255

cv2.namedWindow('1', 0)
cv2.resizeWindow("1", 640, 480)
cv2.namedWindow('2', 0)
cv2.resizeWindow("2", 640, 480)
cv2.namedWindow('3', 0)
cv2.resizeWindow("3", 640, 480)
cv2.namedWindow('4', 0)
cv2.resizeWindow("4", 640, 480)
cv2.imshow("1", img) # 原始图像
cv2.imshow("2", img1) # 梯度幅值图
cv2.imshow("3", img2) # 非极大值抑制灰度图
cv2.imshow("4", img3) # 最终效果图
cv2.waitKey(0)

运行结果如下

以上就是python实现canny边缘检测的详细内容,更多关于canny边缘检测的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python实现Canny及Hough算法代码实例解析

    任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径. 效果 代码实现 Canny边缘检测: # Author: Ji Qiu (BUPT) # filename: my_canny.py import cv2 import numpy as np class Canny: def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_threshold)

  • 使用OpenCV-python3实现滑动条更新图像的Canny边缘检测功能

    import cv2 from matplotlib import pyplot as plt import numpy as np img= cv2.imread('39.jpg')#加载图片 cv2.namedWindow('Canny edge detect')#设置窗口,cv2.WINDOW_NORMAL表示窗口大小可自动调节 cv2.namedWindow('Original Image',cv2.WINDOW_NORMAL) cv2.namedWindow('Canny edgeIm

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

  • python Canny边缘检测算法的实现

    图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波.我们知道微分运算是求信号的变化率,具有加强高频分量的作用.在空域运算中来说,对图像的锐化就是计算微分.对于数字图像的离散信号,微分运算就变成计算差分或梯度.图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值,得到边缘图像. Canny边缘检测算子是一种多级检测算法.1986年由J

  • opencv python Canny边缘提取实现过程解析

    这篇文章主要介绍了opencv python Canny边缘提取实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Canny是边缘提取算法,在1986年提出的是一个很好的边缘检测器Canny算法介绍 非最大信号抑制: 高低阈值连接: example import cv2 as cv import numpy as np # canny运算步骤:5步 # 1. 高斯模糊 - GaussianBlur # 2. 灰度转换 - cvtCol

  • python实现canny边缘检测

    canny边缘检测原理 canny边缘检测共有5部分组成,下边我会分别来介绍. 1 高斯模糊(略) 2 计算梯度幅值和方向. 可选用的模板:soble算子.Prewitt算子.Roberts模板等等; 一般采用soble算子,OpenCV也是如此,利用soble水平和垂直算子与输入图像卷积计算dx.dy: 进一步可以得到图像梯度的幅值: 为了简化计算,幅值也可以作如下近似: 角度为: 如下图表示了中心点的梯度向量.方位角以及边缘方向(任一点的边缘与梯度向量正交) : θ = θm = arcta

  • Python OpenCV Canny边缘检测算法的原理实现详解

    目录 Gaussian smoothing Computing the gradient magnitude and orientation Non-maxima suppression Hysteresis thresholding OpenCV实现 Gaussian smoothing 总的来说,Canny边缘检测可以分为四个步骤: 由于边缘检测对噪声敏感,因此对图像应用高斯平滑以帮助减少噪声.具体做法是,采用一个5*5的高斯平滑滤波器对图像进行滤波处理. Computing the gra

  • Python实现Opencv cv2.Canny()边缘检测

    目录 1. 效果图 2. 源码 补充:OpenCV-Python 中 Canny() 参数 这篇博客将介绍Canny边缘检测的概念,并利用cv2.Canny()实现边缘检测: Canny边缘检测是一种流行的边缘检测算法.它是由约翰F开发的,是一个多阶段的算法: Canny边缘检测大致包含4个步骤: 降噪(使用高斯滤波去除高频噪声): 计算边缘梯度和方向(SobelX.SobleY核在水平方向和垂直方向对平滑后的图像进行滤波,找到每个像素的边缘梯度和方向): 非最大抑制(在得到梯度大小和方向后,对

  • python中opencv Canny边缘检测

    目录 Canny边缘检测 Canny边缘检测基础 高斯滤波去除图像噪声 计算梯度 非极大值抑制 应用双阈值确定边缘 Canny函数及使用 Canny边缘检测 Canny边缘检测是一种使用多级边缘检测算法检测边缘的方法. OpenCV提供了函数cv2.Canny()实现Canny边缘检测. Canny边缘检测基础 Canny边缘检测分为如下几个步骤: 去噪.噪声会影响边缘检测的准确性,因此首先要将噪声过滤掉. 计算梯度的幅度与方向 非极大值抑制,即适当地让边缘“变瘦” 确定边缘.使用双阈值算法确定

  • Python OpenCV实现边缘检测

    本文实例为大家分享了Python OpenCV实现边缘检测的具体代码,供大家参考,具体内容如下 1. Sobel 算子检测 Sobel 算子是高斯平滑和微分运算的组合,抗噪能力很强,用途也很多,尤其是效率要求高但对细纹理不是很在意的时候. 对于不连续的函数,有: 假设要处理的图像为I,在两个方向求导. 水平变化:用奇数大小的模板对图像I卷积,结果为Gx.例如,当模板大小为3时,Gx为: 垂直变化:用奇数大小的模板对图像I卷积,结果为Gy.例如,当模板大小为3时,Gy为: 在图像的每个点,结合以上

  • Python+OpenCV 图像边缘检测四种实现方法

    目录 1.Sobel算子 2.Schaar算子(更能体现细节) 3.Laplacian算子(基于零穿越的,二阶导数的0值点) 4.Canny边缘检测(被认为是最优的边缘检测算法) 总结 import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 设置兼容中文 plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = [

  • 详解Python中图像边缘检测算法的实现

    目录 写在前面 1.一阶微分算子 1.1 Prewitt算子 1.2 Sobel算子 2.二阶微分算子 2.1 Laplace算子 2.2 LoG算子 3.Canny边缘检测 写在前面 从本节开始,计算机视觉教程进入第三章节——图像特征提取.在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用.本文讲解基础特征之一——图像边缘. 本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,

  • Python图像处理之边缘检测原理详解

    目录 原理 Sobel检测算子 Laplacian算子 算子比较 原理 边缘检测是图像处理和计算机视觉当中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点,图像的边缘检测可以大幅度的减少数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性,它们绝大多数可以分为两类:基于搜索和基于零穿越. 基于搜索:通过寻找图像一阶导数中max来检测边界,然后利用计算结果估计边缘的局部方向,通常采用梯度的方向,并在此方向找到局部梯度模的最大值,代表的算法是Sobel算子和Scharr算子.

  • python进行图像边缘检测的详细教程

    目录 边缘检测 边缘检测算子 1.Roberts算子 2.Prewitt算子 3.Sobel算子 4.Canny算子 5.拉普拉斯算子 效果实验 1. Roberts边缘检测 2.Prewitt 边缘检测 3.Sobel边缘检测 4.Canny边缘检测 5.Laplacian 边缘检测 总结 边缘检测 图像边缘是指图像中表达物体的周围像素灰度发生阶跃变化的那些像素集合. 图像中两个灰度不同的相邻区域的交界处,必然存在灰度的快速过渡或称为跳变,它们与图像中各区域边缘的位置相对应,边缘蕴含了丰富的内

随机推荐