tensorflow保持每次训练结果一致的简单实现
在用tensorflow构建神经网络的时候,有很多随机的因素,比如参数的随机初始化: 正态分布随机变量tf.random_normal([m,n]),均匀分布的随机变量tf.random_uniform([m,n]),还有在从tfrecord读取数据时,也会随机打乱数据。
那么由于这些随机的操作,即使是在输入数据完全一样的情况下,每次训练的结果也不一样,那么如果想要使得每次训练的结果一致,应该怎么做呢?
可以在最开始时,固定随机数种子,如下
tf.set_random_seed(1)
以上这篇tensorflow保持每次训练结果一致的简单实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Tensorflow实现在训练好的模型上进行测试
Tensorflow可以使用训练好的模型对新的数据进行测试,有两种方法:第一种方法是调用模型和训练在同一个py文件中,中情况比较简单:第二种是训练过程和调用模型过程分别在两个py文件中.本文将讲解第二种方法. 模型的保存 tensorflow提供可保存训练模型的接口,使用起来也不是很难,直接上代码讲解: #网络结构 w1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1)) b1 = tf.Variable(tf
-
Tensorflow训练模型越来越慢的2种解决方案
1 解决方案 [方案一] 载入模型结构放在全局,即tensorflow会话外层. '''载入模型结构:最关键的一步''' saver = tf.train.Saver() '''建立会话''' with tf.Session() as sess: for i in range(STEPS): '''开始训练''' _, loss_1, acc, summary = sess.run([train_op_1, train_loss, train_acc, summary_op], feed_dic
-
TensorFlow实现保存训练模型为pd文件并恢复
TensorFlow保存模型代码 import tensorflow as tf from tensorflow.python.framework import graph_util var1 = tf.Variable(1.0, dtype=tf.float32, name='v1') var2 = tf.Variable(2.0, dtype=tf.float32, name='v2') var3 = tf.Variable(2.0, dtype=tf.float32, name='v3')
-
tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式
已经有了一个预训练的模型,我需要从其中取出某一层,把该层的weights和biases赋值到新的网络结构中,可以使用tensorflow中的pywrap_tensorflow(用来读取预训练模型的参数值)结合Session.assign()进行操作. 这种需求即预训练模型可能为单分支网络,当前网络为多分支,我需要把单分支A复用到到多个分支去(B,C,D). 先导入对应的工具包 from tensorflow.python import pywrap_tensorflow 接下来的操作在一个tf.
-
tensorflow实现训练变量checkpoint的保存与读取
1.保存变量 先创建(在tf.Session()之前)saver saver = tf.train.Saver(tf.global_variables(),max_to_keep=1) #max_to_keep这个保证只保存最后一次training的训练数据 然后在训练的循环里面 checkpoint_path = os.path.join(Path, 'model.ckpt') saver.save(session, checkpoint_path, global_step=step) #这里
-
Tensorflow训练MNIST手写数字识别模型
本文实例为大家分享了Tensorflow训练MNIST手写数字识别模型的具体代码,供大家参考,具体内容如下 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入层节点=图片像素=28x28=784 OUTPUT_NODE = 10 # 输出层节点数=图片类别数目 LAYER1_NODE = 500 # 隐藏层节点数,只有一个隐藏层 BATCH
-
解决TensorFlow训练内存不断增长,进程被杀死问题
TensorFlow训练时,遇到内存不断增长,最终导致内存不足,进程被杀死. 在这里我不准备对造成这一现象的所有原因进行探讨,只是记录一下我在项目中遇到的这一问题,下面将对我遇到的内存不断增长的原因进行分析. 在TensorFlow中构造图,是将一些op作为节点加入图中,在run之前,是需要构造好一个图的,所以在run的时候,如果run图中不存在的节点,TensorFlow就会将节点加入图中,随着不断的迭代,造成内存不断的增长,从而导致内存不足. 下面举一个很容易发现这个问题的例子: impor
-
tensorflow模型继续训练 fineturn实例
解决tensoflow如何在已训练模型上继续训练fineturn的问题. 训练代码 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. # -*- coding: utf-8 -*-) import tensorflow as tf # 声明占位变量x.y x = tf.placeholder("float", shape=[None, 1]) y = tf.placeholder("float", [None,
-
tensorflow如何继续训练之前保存的模型实例
一:需重定义神经网络继续训练的方法 1.训练代码 import numpy as np import tensorflow as tf x_data=np.random.rand(100).astype(np.float32) y_data=x_data*0.1+0.3 weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w") biases=tf.Variable(tf.zeros([1]),name="b&qu
-
tensorflow保持每次训练结果一致的简单实现
在用tensorflow构建神经网络的时候,有很多随机的因素,比如参数的随机初始化: 正态分布随机变量tf.random_normal([m,n]),均匀分布的随机变量tf.random_uniform([m,n]),还有在从tfrecord读取数据时,也会随机打乱数据. 那么由于这些随机的操作,即使是在输入数据完全一样的情况下,每次训练的结果也不一样,那么如果想要使得每次训练的结果一致,应该怎么做呢? 可以在最开始时,固定随机数种子,如下 tf.set_random_seed(1) 以上这篇t
-
利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式
Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自己的分类器,本文介绍怎样使用Tensorflow构建自己的CNN,怎样训练用于简单的验证码识别的分类器.本文假设你已经安装好了Tensorflow,了解过CNN的一些知识. 下面将分步介绍怎样获得训练数据,怎样使用tensorflow构建卷积神经网络,怎样训练,以及怎样测试训练出来的分类器 1. 准备训练样本 使用Python的库captcha来生成我们需要的训练样本,代码如下: import sys i
-
Python通过TensorFLow进行线性模型训练原理与实现方法详解
本文实例讲述了Python通过TensorFLow进行线性模型训练原理与实现方法.分享给大家供大家参考,具体如下: 1.相关概念 例如要从一个线性分布的途中抽象出其y=kx+b的分布规律 特征是输入变量,即简单线性回归中的 x 变量.简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征. 标签是我们要预测的事物,即简单线性回归中的 y 变量. 样本是指具体的数据实例.有标签样本是指具有{特征,标签}的数据,用于训练模型,总结规律.无标签样本只具有特征的数据x,通过
-
TensorFlow实现随机训练和批量训练的方法
TensorFlow更新模型变量.它能一次操作一个数据点,也可以一次操作大量数据.一个训练例子上的操作可能导致比较"古怪"的学习过程,但使用大批量的训练会造成计算成本昂贵.到底选用哪种训练类型对机器学习算法的收敛非常关键. 为了TensorFlow计算变量梯度来让反向传播工作,我们必须度量一个或者多个样本的损失. 随机训练会一次随机抽样训练数据和目标数据对完成训练.另外一个可选项是,一次大批量训练取平均损失来进行梯度计算,批量训练大小可以一次上扩到整个数据集.这里将显示如何扩展前面的回
-
tensorflow 固定部分参数训练,只训练部分参数的实例
在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练. 1.首先想到的是用tf.placeholder()载入不同的数据来进行计算,比如 def inference(input_): """ this is where you put your graph. the following is just an example. """ conv1 = tf.layers.conv2d(inp
-
tensorflow入门之训练简单的神经网络方法
这几天开始学tensorflow,先来做一下学习记录 一.神经网络解决问题步骤: 1.提取问题中实体的特征向量作为神经网络的输入.也就是说要对数据集进行特征工程,然后知道每个样本的特征维度,以此来定义输入神经元的个数. 2.定义神经网络的结构,并定义如何从神经网络的输入得到输出.也就是说定义输入层,隐藏层以及输出层. 3.通过训练数据来调整神经网络中的参数取值,这是训练神经网络的过程.一般来说要定义模型的损失函数,以及参数优化的方法,如交叉熵损失函数和梯度下降法调优等. 4.利用训练好的模型预测
-
利用TensorFlow训练简单的二分类神经网络模型的方法
利用TensorFlow实现<神经网络与机器学习>一书中4.7模式分类练习 具体问题是将如下图所示双月牙数据集分类. 使用到的工具: python3.5 tensorflow1.2.1 numpy matplotlib 1.产生双月环数据集 def produceData(r,w,d,num): r1 = r-w/2 r2 = r+w/2 #上半圆 theta1 = np.random.uniform(0, np.pi ,num) X_Col1 = np.random.unifo
随机推荐
- jquery 简单的图片展示效果
- AngularJS实现单一页面内设置跳转路由的方法
- 批处理应用 OFFICE复位
- Android抽奖轮盘的制作方法
- CentOS系统中安装MySQL和开启MySQL远程访问的方法
- Android WebView那些坑之上传文件示例
- vue 2.0封装model组件的方法
- 判断javascript的数据类型(示例代码)
- 基于h5 ajax实现手机定位(demo)
- package.json文件配置详解
- 利用进制转换压缩数字函数分享
- 个人FTP建站域名解析serv-u常见问题解决方法之完全解决方案第1/2页
- 通过vue写一个瀑布流插件代码实例
- 使用layui 的layedit定义自己的toolbar方法
- 在MySQL中自定义参数的使用详解
- mongodb的写操作
- Docker部署Kafka以及Spring Kafka实现
- Python3.5多进程原理与用法实例分析
- 关于Mysql8.0版本驱动getTables返回所有库的表问题浅析
- jQuery实现判断上传图片类型和大小的方法示例