新手入门学习python Numpy基础操作
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。是在学习机器学习、深度学习之前应该掌握的一个非常基本且实用的Python库。
导入库,创建数组
import numpy as np a = np.arraya = np.array([0, 1, 2, 3, 4] ) #使用array函数 a = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], [26, 27, 28 ,29, 30], [31, 32, 33, 34, 35]]) #创建多维数组 a=np.zeros((2, 3)) #创建两行三列的0填充的矩阵,ones(shape)则是创建1填充的,np.full((m,n)8) m行n列的全部是8的参数 a=np.linspace(1., 4., 6) #创建1到4之间,共6个元素的等值间距的数组 a=np.arange(起,止,步长) #创建 从起到至,按步长排列的数组 a= np.indices((3,3)) #创建一个堆叠的更高维度的数组 a=np.mat() #创建矩阵,array只能从列表中生成,而mat可以从字符串或者列表中生成,比如mat("1,2;3,4"),而array([1,2,3,4]),mat是矩阵、array是数组(假矩阵)
基本操作符
np中矩阵之间加减乘除是对应元素的+、-、*、/, 【注】一个数组加一个整数,则是对该数组每个元素加该整数,这个过程成为数组的广播,如果阶数不同则是每行与每行对应相乘。
mat的矩阵若是使用*则是矩阵相乘,而非对应元素相乘
其他的计算函数:
- multiply(),数组或矩阵对应位置相乘
- dot()函数,a.dot(b)表示ab矩阵相乘,数学上的相乘。
- sum() #求和,可使用axis限定方向,0为纵向,1为横向。[[...],[...],[...]]这样横着放求得时候他也会默认为二维方阵,最后结果是[...]
- min() #找出最小的元素
- max() #找出最大的元素
- mean() #返回均值
- std() #返回标准方差
- var() #返回方差
- cumprod() #原数组该位置的前几项元素乘 (累乘数组),可以使用axis指定方向,0表示纵向,1表示横向,默认横向
- cumsum() #原数组该位置的前几项元素和 (累加数组)
- ptp() #返回最大值减去最小值
np的索引和切片
import numpy as np data = np.arange(12).reshape((3, 4)) print(data) ##对数组元素进行索引和切片 # 1. 取第一行的数据 print(data[0]) # 2. 取第一列的数据 print(data.T[0]) print(data[:, 1]) #3. 获取多行 print(data[:2]) # 4. 获取多行列 print(data.T[:2]) print(data[:, :2]) # 5. 获取指定行的前几列; print(data) print(data[[0,2], :2]) print(data[:2, [0,2]])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
Python使用numpy产生正态分布随机数的向量或矩阵操作示例
本文实例讲述了Python使用numpy产生正态分布随机数的向量或矩阵操作.分享给大家供大家参考,具体如下: 简单来说,正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力.一般的正态分布可以通过标准正态分布配合数学期望向量和协方差矩阵得到.如下代码,可以得到满足一维和二维正态分布的样本. 示例1(一维正态分布): # coding=utf-8 '''
-
Python Numpy 数组的初始化和基本操作
Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. 一.基础: Numpy的主要数据类型是ndarray,即多维数组.它有以下几个属性: ndarray.ndim:数组的维数 ndarray.shape:数组每一维的大小 ndarray.size:数组中全部元素的数量 ndarray.dtype:数组中元素的类型(numpy.int32, numpy.int16, and num
-
Python Numpy库安装与基本操作示例
本文实例讲述了Python Numpy库安装与基本操作.分享给大家供大家参考,具体如下: 概述 NumPy(Numeric Python)扩展包提供了数组功能,以及对数据进行快速处理的函数. NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用. 安装 通过pip安装numpy pip install numpy Numpy基本操作 >>> import numpy as np #一般以np作为numpy的别名 >>&
-
python+numpy实现的基本矩阵操作示例
本文实例讲述了python+numpy实现的基本矩阵操作.分享给大家供大家参考,具体如下: #! usr/bin/env python # coding: utf-8 # 学习numpy中矩阵的代码笔记 # 2018年05月29日15:43:40 # 参考网站:http://cs231n.github.io/python-numpy-tutorial/ import numpy as np #==================矩阵的创建,增删查改,索引,运算==================
-
Python中的Numpy矩阵操作
Numpy 通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包. NumPy 是一个非常优秀的提供矩阵操作的包.NumPy的主要目标,就是提供多维数组,从而实现矩阵操作. NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the sa
-
Python实现曲线拟合操作示例【基于numpy,scipy,matplotlib库】
本文实例讲述了Python实现曲线拟合操作.分享给大家供大家参考,具体如下: 这两天学习了用python来拟合曲线. 一.环境配置 本人比较比较懒,所以下载的全部是exe文件来安装,安装按照顺利来安装.自动会找到python的安装路径,一直点下一步就行.还有其他的两种安装方式:一种是解压,一种是pip.我没有尝试,就不乱说八道了. 没有ArcGIS 环境的,可以不看下面这段话了. 在配置环境时遇见一个小波折,就是原先电脑装过ArcGIS10.2 ,所以其会默认安装python2.7,而且pyth
-
Python使用numpy模块实现矩阵和列表的连接操作方法
Numpy模块被广泛用于科学和数值计算,自然有它的强大之处,之前对于特征处理中需要进行数据列表或者矩阵拼接的时候都是自己写的函数来完成的,今天发现一个好玩的函数,不仅好玩,关键性能强大,那就是Numpy模块自带的矩阵.列表连接函数,实践一下. #!usr/bin/env python #encoding:utf-8 from __future__ import division ''' __Author__:沂水寒城 使用numpy模块实现矩阵的连接操作 ''' import numpy as
-
python numpy数组的索引和切片的操作方法
NumPy - 简介 NumPy 是一个 Python 包. 它代表 "Numeric Python". 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用Nu
-
新手入门学习python Numpy基础操作
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.是在学习机器学习.深度学习之前应该掌握的一个非常基本且实用的Python库. 导入库,创建数组 import numpy as np a = np.arraya = np.array([0, 1, 2, 3, 4] ) #使用array函数 a = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 1
-
Python入门学习Python流处理过程
目录 Faust是一个流处理库 将kafka流中的思想移植到Python中 agent是一个async def的函数,因此它还可以异步执行其他操作 使用Kafka topic作为"预写日志" Faust支持任何类型的流数据 Faust是静态类型的 Faust简介 高可用性 分布式的 快速 灵活性 安装 绑定 下载并从源文件中安装 使用开发版本 常见问题 Faust是一个流处理库 将kafka流中的思想移植到Python中 它被用于Robinhood去构建高性能的分布式系统和实时数据通道
-
Java新手入门学习之正则表达式
一.概述 1.概念:符合一定规则的表达式. 2.作用:用于专门操作字符串. 3.特点:用于一些特定的符号来表示一些代码操作,这样就可以简化代码书写. 4.好处:可简化对字符串的基本操作. 5.弊端:符号定义越多,正则越长,阅读性越差. 二.常用符号: 说明:X表示字符X或者匹配的规则. 一)字符 构造 匹配 \ 反斜线字符 \t 制表符 \n 回车符 \f 换页符 二)字符类 表达式 释义 [abc] a.b或c(简单类) [^abc] 任何字符,除了a.b或c(否定) [a-zA-Z] a到z
-
Python Pandas基础操作详解
目录 数据结构&Series: DataFrame的构建: 索引操作: DataFrame基本操作: 广播运算: 索引增删改查: 字符串元素处理: 数据规整: 总结 数据结构&Series: ''' series {索引 + 数据} 形式 索引是自动生成的 ''' #通过 list 创建 s1 = pd.Series([1, 2, 3, 4, 5]) #通过np数组创建 arr1 = np.arange(10) s2 = pd.Series(arr1) #自定义索引 s2 = pd.Ser
-
新手入门学习Spring Freemarker教程解析
初步学习freemarker ,先做一个简单的HelloWord程序! 新建一个WEB工程,下载(我使用的是freemarker-2.3.20)freemarker并导入freemarker.jar,在WEB-INF下新建文件夹templates用于存放模版文件 在templates下新建test.ftl,这是示例模版文件.内容就是HTML内容,里面带有一个标记符,用于将来进行变量替换,内容如下: <html> <head> <title>freemarker测试<
-
python字符串基础操作详解
目录 字符串的赋值 单引号字符串赋值给变量 双引号字符串赋值给变量 三引号字符串赋值给变量(多行) 字符串的截取 截取指定位置的字符 获取指定位置之后的所有字符 截取指定位置之前的所有字符 获取所有的字符 获取指定倒数位置的字符,用[-]来进行表示 获取指定位置倒数之前的字符 获取两个位置之间的字符 字符串的基础使用方法 strip() lstrip() rstrip() lower() upper() capitalize() title() index() rindex() split()
-
Python入门学习之Python流处理过程
目录 Faust简介 高可用性 分布式的 快速 灵活性 安装 绑定 下载并从源文件中安装 使用开发版本 常见问题 Faust是一个流处理库,将kafka流中的思想移植到Python中 它被用于Robinhood去构建高性能的分布式系统和实时数据通道,每天处理数十亿的数据. Faust同时提供流处理和事件处理同类型的工具分享例如:Kafka Streams, Apache Spark/Storm/Samza/Flink 它不需要使用一个DSL,仅需要用到Python!这意味着你在做流处理的时候可以
-
python numpy查询定位赋值数值所在行列
目录 根据条件筛选行(筛选) 根据行列号取值(查询) 根据值求行列号(定位) 按行/列求和(求和) 赋值 根据条件筛选行(筛选) 筛选矩阵中第7列值为5的行 B = A[ A[:,6] == 5] 筛选矩阵中第7列大于5的行 B = A[ A[:,6] > 5] Numpy基础操作 根据行列号取值(查询) 取第2行第2列的数字 import numpy as np #产生3行4列的矩阵 x=np.arange(0,12) x=x.reshape((3,4)) print(x) y=x[1,1]
-
python基础入门学习笔记(Python环境搭建)
Python学习第一篇.把之前学习的Python基础知识总结一下. 一.认识Python 首先我们得清楚这个:Python这个名字是从Monty Python借鉴过来的,而不是源于大家所知道的大蟒蛇的意思.我们为什么要学习Python呢?就我而言,我知道豆瓣在使用.重视Python,加上我想学习网页爬虫技术,所以,我要学习Python编程.另外在国外,Yahoo和Google都在使用Python.那么,Python就很值得我们认真学习. 二.Hello,World! 首先我们需要安装Python
-
python爬虫beautifulsoup库使用操作教程全解(python爬虫基础入门)
[python爬虫基础入门]系列是对python爬虫的一个入门练习实践,旨在用最浅显易懂的语言,总结最明了,最适合自己的方法,本人一直坚信,总结才会使人提高 1. BeautifulSoup库简介 BeautifulSoup库在python中被美其名为"靓汤",它和和 lxml 一样也是一个HTML/XML的解析器,主要的功能也是如何解析和提取 HTML/XML 数据.BeautifulSoup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,若在没用安装此库的情况下
随机推荐
- 深入浅析javascript立即执行函数
- javascript 单例模式详解及简单实例
- zend framework配置操作数据库实例分析
- 网站导致浏览器崩溃的原因总结(多款浏览器) 推荐
- Python MD5加密实例详解
- Java实现多线程断点下载实例代码(下载过程中可以暂停)
- C#使用Aspose.Cells控件读取Excel
- js字符串转成JSON
- mysql如何处理varchar与nvarchar类型中的特殊字符
- nodejs中转换URL字符串与查询字符串详解
- js实现鼠标触发图片抖动效果的方法
- php实现无限级分类实现代码(递归方法)
- 使用Ajax进行文件与其他参数的上传功能(java开发)
- SQL Server2005异地自动备份方法
- Java单例模式简单介绍
- jQuery 常用代码集锦(必看篇)
- jquery+json实现动态商品内容展示的方法
- thinkphp 验证码 的使用小结
- Java新特性之Nashorn_动力节点Java学院整理
- 详解Android studio如何导入jar包方法