python opencv检测直线 cv2.HoughLinesP的实现

cv2.HoughLines()函数是在二值图像中查找直线,cv2.HoughLinesP()函数可以查找直线段。

cv2.HoughLinesP()函数原型:

HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None)
  • image: 必须是二值图像,推荐使用canny边缘检测的结果图像;
  • rho: 线段以像素为单位的距离精度,double类型的,推荐用1.0
  • theta: 线段以弧度为单位的角度精度,推荐用numpy.pi/180
  • threshod: 累加平面的阈值参数,int类型,超过设定阈值才被检测出线段,值越大,基本上意味着检出的线段越长,检出的线段个数越少。根据情况推荐先用100试试
  • lines:这个参数的意义未知,发现不同的lines对结果没影响,但是不要忽略了它的存在
  • minLineLength:线段以像素为单位的最小长度,根据应用场景设置
  • maxLineGap:同一方向上两条线段判定为一条线段的最大允许间隔(断裂),超过了设定值,则把两条线段当成一条线段,值越大,允许线段上的断裂越大,越有可能检出潜在的直线段

HoughLinesP()调用例子:

# coding=utf-8
import cv2
import numpy as np

img = cv2.imread('02.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

gaus = cv2.GaussianBlur(gray,(3,3),0)

edges = cv2.Canny(gaus, 50, 150, apertureSize=3)

minLineLength = 100
maxLineGap = 10
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength, maxLineGap)

for x1, y1, x2, y2 in lines[0]:
    cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)

cv2.imshow("houghline",img)
cv2.waitKey()
cv2.destroyAllWindows()

到此这篇关于python opencv检测直线 cv2.HoughLinesP的实现的文章就介绍到这了,更多相关opencv检测直线cv2.HoughLinesP内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java+opencv3.2.0实现hough直线检测

    hough变换是图像处理中的一种特征提取技术,该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合特定形状的集合作为hough变换结果. 发展史: 1962年由PaulHough首次提出,用来检测直线和曲线. 1972年由Richard Duda & Peter Hart推广使用,扩展到任意形状物体的识别. 原理: 一条直线在直角坐标系下的表示形式为y=k*x+b,而在极坐标系下表示为r=x*cos(theta)+y*sin(theta).hough变换的思想为在直角坐标系下的一个点对

  • OpenCV霍夫变换(Hough Transform)直线检测详解

    霍夫变换(Hough Transform)的主要思想: 一条直线在平面直角坐标系(x-y)中可以用y=ax+b式表示,对于直线上一个确定的点(x0,y0),总符合y0-ax0=b,而它可以表示为参数平面坐标系(a-b)中的一条直线.因此,图像中的一个点对应参数平面的一条直线,同样,图像中的一条直线对应参数平面上的一个点. 基本Hough变换检测直线: 由于同一条直线上的不同点在参数平面中是会经过同一个点的多条线.对图像的所有点作霍夫变换,检测直线就意味着找到对应参数平面中的直线相交最多的点.对这

  • 利用Opencv中Houghline方法实现直线检测

    利用Opencv中的Houghline方法进行直线检测-python语言 这是给Python部落翻译的文章,请在这里看原文. 在图像处理中,霍夫变换用来检测任意能够用数学公式表达的形状,即使这个形状被破坏或者有点扭曲. 下面我们将看到利用HoughLine算法来阐述霍夫变化进行直线检测的原理,把此算法应用到特点图像的边缘检测是可取的.边缘检测方法请参考这篇文章–边缘检测. Houghline算法基础 直线可以表示为y=mx+c,或者以极坐标形式表示为r=xcosθ+ysinθ,其中r是原点到直线

  • Java+opencv3.2.0实现hough圆检测功能

    hough圆检测和hough线检测的原理近似,对于圆来说,在参数坐标系中表示为C:(x,y,r). 函数: Imgproc.HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius) 参数说明: image:源图像 circles:检测到的圆的输出矢量(x,y,r) method:使用的

  • Opencv2.4.9函数HoughLinesP分析

    标准霍夫变换本质上是把图像映射到它的参数空间上,它需要计算所有的M个边缘点,这样它的运算量和所需内存空间都会很大.如果在输入图像中只是处理m(m<M)个边缘点,则这m个边缘点的选取是具有一定概率性的,因此该方法被称为概率霍夫变换(Probabilistic Hough Transform).该方法还有一个重要的特点就是能够检测出线端,即能够检测出图像中直线的两个端点,确切地定位图像中的直线. HoughLinesP函数就是利用概率霍夫变换来检测直线的.它的一般步骤为: 1.随机抽取图像中的一个特

  • Python下opencv使用hough变换检测直线与圆

    在数字图像中,往往存在着一些特殊形状的几何图形,像检测马路边一条直线,检测人眼的圆形等等,有时我们需要把这些特定图形检测出来,hough变换就是这样一种检测的工具. Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等). 关于hough变换,核心以及难点就是关于就是有原始空间到参数空间的变换上.以直线检测为例,假设有一条直线L,

  • Opencv Hough算法实现图片中直线检测

    本文实例为大家分享了Opencv Hough算法实现直线检测的具体代码,供大家参考,具体内容如下 (1)载入需检测的图及显示原图 Mat g_srcImage = imread("C:\\Users\\lenovo\\Pictures\\Saved Pictures\\Q.jpg"); //图片所放路径 imshow("[原始图]", g_srcImage); (2)为显示不同的效果图而设置滑动条 namedWindow("[效果图]", 1);

  • python opencv检测直线 cv2.HoughLinesP的实现

    cv2.HoughLines()函数是在二值图像中查找直线,cv2.HoughLinesP()函数可以查找直线段. cv2.HoughLinesP()函数原型: HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None) image: 必须是二值图像,推荐使用canny边缘检测的结果图像: rho: 线段以像素为单位的距离精度,double类型的,推荐用1.0 theta:

  • python opencv实现直线检测并测出倾斜角度(附源码+注释)

    由于学习需要,我想要检测出图片中的直线,并且得到这些直线的角度.于是我在网上搜了好多直线检测的代码,但是没有搜到附有计算直线倾斜角度的代码,所以我花了一点时间,自己写了一份直线检测并测出倾斜角度的代码,希望能够帮助到大家! 注:这份代码只能够检测简单结构图片的直线,复杂结构的图片还需要设置合理的参数 下面展示 源码. import cv2 import numpy as np def line_detect(image): # 将图片转换为HSV hsv = cv2.cvtColor(image

  • Python OpenCV Hough直线检测算法的原理实现

    目录 直线检测原理 OpenCV实现 直线检测原理 核心要点:图像坐标空间.参数空间.极坐标参数空间 -> (极坐标)参数空间表决 给定一个点,我们一般会写成y=ax+b的形式,这是坐标空间的写法:我们也可以写成b=-xa+y的形式,这是参数空间的写法.也就是说,给定一个点,那么经过该点的直线的参数必然满足b=-xa+y这一条件,也就是必然在参数空间中b=-xa+y这条直线上.如果给定两个点,那么这两点确定的唯一的直线的参数,就是参数空间中两条参数直线的交点. 由于上述写法不适合处理水平或垂直的

  • python opencv检测目标颜色的实例讲解

    实例如下所示: # -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/07/2017' import cv2 import numpy as np import time if __name__ == '__main__': Img = cv2.imread('example.png')#读入一幅图像 kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核

  • python opencv 检测移动物体并截图保存实例

    最近在老家找工作,无奈老家工作真心太少,也没什么面试机会,不过之前面试一家公司,提了一个有意思的需求,检测河面没有有什么船只之类的物体,我当时第一反应是用opencv做识别,不过回家想想,河面相对的东西比较少,画面比较单一,只需要检测有没有移动的物体不就简单很多嘛,如果做街道垃圾检测的话可能就很复杂了,毕竟街道上行人,车辆,动物,很多干扰物,于是就花了一个小时写了一个小的demo,只需在程序同级目录创建一个img目录就可以了 # -*-coding:utf-8 -*- __author__ =

  • Python+OpenCV检测灯光亮点的实现方法

    本篇博文分享一篇寻找图像中灯光亮点(图像中最亮点)的教程,例如,检测图像中五个灯光的亮点并标记,项目效果如下所示: 第1步:导入并打开原图像,实现代码如下所示: # import the necessary packages from imutils import contours from skimage import measure import numpy as np import argparse import imutils import cv2 # construct the arg

  • opencv检测直线方法之投影法

    本文实例为大家分享了opencv检测直线之投影法的具体代码,供大家参考,具体内容如下 以下是我对投影法的一点认识和实验: 投影法就是数字图像在某个方向上进行像素累加.通过水平和垂直方向的投影,可以得到表格图像投影的几个特点: (1)表格区域的水平与竖直投影分布通常出现周期性的尖峰 (2)在文字投影的行与行之间或列与列之间常会出现明显的空白区 因此,求图像水平以及竖直投影,根据特点分别设以阈值就可以将横线以及竖直线所在位置确定. 第一步:求图像的水平投影.竖直投影 第二步:设定合理阈值,求取大于阈

  • 对python opencv 添加文字 cv2.putText 的各参数介绍

    如下所示: cv2.putText(img, str(i), (123,456)), font, 2, (0,255,0), 3) 各参数依次是:图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细 其中字体可以选择 FONT_HERSHEY_SIMPLEX Python: cv.FONT_HERSHEY_SIMPLEX normal size sans-serif font FONT_HERSHEY_PLAIN Python: cv.FONT_HERSHEY_PLAIN small s

  • opencv检测直线方法之形态学方法

    在阅读文献中,偶然发现使用使用形态学方法也可以检测直线,故做实验并记录. 使用该方法,需要定义一个长度为L的结构元素element,其大小应足够大以保留图像中的字符笔划,然而又恰好能检测出图像中最短的表格线. 定义如下两个结构element用以检测图中水平.竖直的表格线: Mat element1 = getStructuringElement(MORPH_RECT, Size(70, 1));// size的width应大于图像中的横向笔划 Mat element3 = getStructur

  • Python OpenCV实现图形检测示例详解

    目录 1. 轮廓识别与描绘 1.1 cv2.findComtours()方法 1.2 cv2.drawContours() 方法 1.3 代码示例 2. 轮廓拟合 2.1 矩形包围框拟合 - cv2.boundingRect() 2.2圆形包围框拟合 - cv2.minEnclosingCircle() 3. 凸包 绘制 4. Canny边缘检测 - cv2.Canny() 4.1 cv2.Canny() 用法简介 4.2 代码示例 5. 霍夫变换 5.1 概述 5.2 cv2.HoughLin

随机推荐