Python实现对图像添加高斯噪声或椒盐噪声

目录
  • 内容简介
  • 加噪声的代码(高斯噪声,椒盐噪声)
  • 在pytorch中如何使用

内容简介

展示如何给图像叠加不同等级的椒盐噪声和高斯噪声的代码,相应的叠加噪声的已编为对应的类,可实例化使用。以下主要展示自己编写的:

加噪声的代码(高斯噪声,椒盐噪声)

add_noise.py

#代码中的noisef为信号等级,例如我需要0.7的噪声,传入参数我传入的是1-0.7
from PIL import Image
import numpy as np
import random

import torchvision.transforms as transforms

norm_mean = (0.5, 0.5, 0.5)
norm_std = (0.5, 0.5, 0.5)
class AddPepperNoise(object):
    """增加椒盐噪声
    Args:
        snr (float): Signal Noise Rate
        p (float): 概率值,依概率执行该操作
    """

    def __init__(self, snr, p=0.9):
        assert isinstance(snr, float) and (isinstance(p, float))    # 2020 07 26 or --> and
        self.snr = snr
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): PIL Image
        Returns:
            PIL Image: PIL image.
        """
        if random.uniform(0, 1) < self.p:
            img_ = np.array(img).copy()
            h, w, c = img_.shape
            signal_pct = self.snr
            noise_pct = (1 - self.snr)
            mask = np.random.choice((0, 1, 2), size=(h, w, 1), p=[signal_pct, noise_pct/2., noise_pct/2.])
            mask = np.repeat(mask, c, axis=2)
            img_[mask == 1] = 255   # 盐噪声
            img_[mask == 2] = 0     # 椒噪声
            return Image.fromarray(img_.astype('uint8')).convert('RGB')
        else:
            return img

class Gaussian_noise(object):
    """增加高斯噪声
    此函数用将产生的高斯噪声加到图片上
    传入:
        img   :  原图
        mean  :  均值
        sigma :  标准差
    返回:
        gaussian_out : 噪声处理后的图片
    """

    def __init__(self, mean, sigma):

        self.mean = mean
        self.sigma = sigma

    def __call__(self, img):
        """
        Args:
            img (PIL Image): PIL Image
        Returns:
            PIL Image: PIL image.
        """
        # 将图片灰度标准化
        img_ = np.array(img).copy()
        img_ = img_ / 255.0
        # 产生高斯 noise
        noise = np.random.normal(self.mean, self.sigma, img_.shape)
        # 将噪声和图片叠加
        gaussian_out = img_ + noise
        # 将超过 1 的置 1,低于 0 的置 0
        gaussian_out = np.clip(gaussian_out, 0, 1)
        # 将图片灰度范围的恢复为 0-255
        gaussian_out = np.uint8(gaussian_out*255)
        # 将噪声范围搞为 0-255
        # noise = np.uint8(noise*255)
        return Image.fromarray(gaussian_out).convert('RGB')

def image_transform(noisef):
    """对训练集和测试集的图片作预处理转换
        train_transform:加噪图
        _train_transform:原图(不加噪)
        test_transform:测试图(不加噪)
    """
    train_transform = transforms.Compose([
        transforms.Resize((256, 256)),  # 重设大小
        #transforms.RandomCrop(32,padding=4),
        AddPepperNoise(noisef, p=0.9),                 #加椒盐噪声

        #Gaussian_noise(0, noisef),  # 加高斯噪声

        transforms.ToTensor(),  # 转换为张量
        # transforms.Normalize(norm_mean,norm_std),
    ])
    _train_transform = transforms.Compose([
        transforms.Resize((256, 256)),
        #transforms.RandomCrop(32,padding=4),
        transforms.ToTensor(),
        # transforms.Normalize(norm_mean,norm_std),

    ])
    test_transform = transforms.Compose([
        transforms.Resize((256, 256)),
        #transforms.RandomCrop(32,padding=4),
        transforms.ToTensor(),
        # transforms.Normalize(norm_mean,norm_std),

    ])
    return train_transform, _train_transform, test_transform

在pytorch中如何使用

# 图像变换和加噪声train_transform为加噪图,_train_transform为原图,test_transform为测试图   noisef为传入的噪声等级
train_transform,_train_transform,test_transform = image_transform(noisef)

training_data=FabricDataset_file(data_dir=train_dir,transform=train_transform)
_training_data=FabricDataset_file(data_dir=_train_dir,transform=_train_transform)
testing_data=FabricDataset_file(data_dir=test_dir,transform=test_transform) 

以上就是Python实现对图像添加高斯噪声或椒盐噪声的详细内容,更多关于Python的资料请关注我们其它相关文章!

(0)

相关推荐

  • 使用Python-OpenCV向图片添加噪声的实现(高斯噪声、椒盐噪声)

    在matlab中,存在执行直接得函数来添加高斯噪声和椒盐噪声.Python-OpenCV中虽然不存在直接得函数,但是很容易使用相关的函数来实现. 代码: import numpy as np import random import cv2 def sp_noise(image,prob): ''' 添加椒盐噪声 prob:噪声比例 ''' output = np.zeros(image.shape,np.uint8) thres = 1 - prob for i in range(image.

  • Python给图像添加噪声具体操作

    在我们进行图像数据实验的时候往往需要给图像添加相应的噪声,那么该怎么添加呢,下面给出具体得操作方法. 1.打开Python的shell界面,界面如图所示: 2.载入skimage工具包和其他的工具包,如图所示,代码如下: from skimage import io,data import numpy as np 3.采用以下指令读取图片: img=data.coffee() 4.采用以下指令填产生噪声: rows,cols,dims=img.shape for i in range(5000)

  • python数字图像处理之估计噪声参数

    估计噪声参数 周期噪声的参数通常是通过检测图像的傅里叶谱来估计的. 只能使用由传感器生成的图像时,可由一小片恒定的背景灰度来估计PDF的参数. 来自图像条带的数据的最简单用途是,计算灰度级的均值和方差.考虑由 S S S表示的一个条带(子图像),并令 P S ( z i ) P_{S}(z_i) PS​(zi​), i = 0 , 1 , 2 , - , L − 1 i = 0, 1, 2, \dots, L-1 i=0,1,2,-,L−1表示 S S S中的像素灰度的概率估计(归一化直方图值)

  • Python实现对图像添加高斯噪声或椒盐噪声

    目录 内容简介 加噪声的代码(高斯噪声,椒盐噪声) 在pytorch中如何使用 内容简介 展示如何给图像叠加不同等级的椒盐噪声和高斯噪声的代码,相应的叠加噪声的已编为对应的类,可实例化使用.以下主要展示自己编写的: 加噪声的代码(高斯噪声,椒盐噪声) add_noise.py #代码中的noisef为信号等级,例如我需要0.7的噪声,传入参数我传入的是1-0.7 from PIL import Image import numpy as np import random import torch

  • 如何利用python正确地为图像添加高斯噪声

    目录 彩图or灰度图 uint8orfloat64 方差or标准差 是否截断(clip) 总结 参考 开门见山,直接使用 skimage 库为图像添加高斯噪声是很简单的: import skimage origin = skimage.io.imread("./lena.png") noisy = skimage.util.random_noise(origin, mode='gaussian', var=0.01) 但是如果不用库函数而自己实现的话,有几个问题是值得注意的. 彩图 o

  • Python实现为图像添加下雪特效

    目录 导语 正文 一.故宫下雪了:界面小程序 1)附主程序 2)效果展示 二.故宫下雪了:手绘素描 1)主程序 2)效果展示 导语 也许是为了和音,在立冬这一天的人间里 北方多个城市,悄然降下冬天的第一场初雪,组成了一段旋律 一天过两季,黄叶转飞花--从天而降落,昼夜不停,一夜醒来,阁檐染白,故宫完成秋冬交接, 来自北方的故事纷纷踏雪而来. 琼楼银装,粉饰玉砌,不觉恍入天上仙境,宫墙内宾客如云,宫墙外车水马龙,若把故宫作天宫, 整夜冬天不觉冷.(可以穿秋裤了.jpg) (本文的部分素材是在北京故

  • Python实现对图像加噪(高斯噪声 椒盐噪声)

    目录 内容简介 加噪声的代码(高斯噪声,椒盐噪声) 在pytorch中如何使用 补充 内容简介 展示如何给图像叠加不同等级的椒盐噪声和高斯噪声的代码,相应的叠加噪声的已编为对应的类,可实例化使用.以下主要展示自己编写的: 加噪声的代码(高斯噪声,椒盐噪声) add_noise.py #代码中的noisef为信号等级,例如我需要0.7的噪声,传入参数我传入的是1-0.7 from PIL import Image import numpy as np import random import to

  • 利用OpenCV给彩色图像添加椒盐噪声的方法

    目录 一.图像噪声 二.椒盐噪声 三.C++代码 四.结果展示 1.原图 2.添加椒盐噪声 五.python代码 六.结果展示 1.原图 2.添加椒盐噪声 七.总结 一.图像噪声 图像噪声是图像在获取或者传输过程中受到随机信号干扰,妨碍人们对图像理解及分析处理的信号.很多时候将图像看作随机过程,因而描述噪声的方法完全可以借用随机过程的描述,即使用其概率分布函数和概率密度分布函数.图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产生图像噪声的主要因素是所用的传输信道受

  • python使用opencv对图像添加噪声(高斯/椒盐/泊松/斑点)

    目录 1.高斯噪声 2.椒盐噪声 3.泊松噪声 4.speckle噪声 导读: 这篇文章主要介绍如何利用opencv来对图像添加各类噪声,原图: 1.高斯噪声 高斯噪声就是给图片添加一个服从高斯分布的噪声,可以通过调节高斯分布标准差(sigma)的大小来控制添加噪声程度,sigma越大添加的噪声越多图片损坏的越厉害 #读取图片 img = cv2.imread("demo.png") #设置高斯分布的均值和方差 mean = 0 #设置高斯分布的标准差 sigma = 25 #根据均值

  • Python实现图像随机添加椒盐噪声和高斯噪声

    目录 1.常见的图像噪声 (1)高斯噪声 (2) 椒盐噪声 2.生成图像噪声 (1)高斯噪声 (2) 椒盐噪声(速度慢) (3) 椒盐噪声(快速版) 3. Demo性能测试 图像噪声是指存在于图像数据中的不必要的或多余的干扰信息.在噪声的概念中,通常采用信噪比(Signal-Noise Rate, SNR)衡量图像噪声.通俗的讲就是信号占多少,噪声占多少,SNR越小,噪声占比越大. 1.常见的图像噪声 (1)高斯噪声 高斯噪声Gaussian noise,是指它的概率密度函数服从高斯分布(即正态

  • 利用python3如何给数据添加高斯噪声

    目录 Background 原始数据 源码 总结 Background 高斯噪声,顾名思义是指服从高斯分布(正态分布)的一类噪声.有的时候我们需要向标准数据中加入合适的高斯噪声让数据更加符合实际. python中的random库中集成了高斯正态分布,可以直接使用. 我们可以通过调整高斯噪声均值和方差,获取不同效果的处理数据. 原始数据 高斯噪声sigma = 0.05 高斯噪声sigma = 0.1 高斯噪声sigma = 0.15 源码 import random import numpy a

随机推荐