Python中如何使用Matplotlib库绘制图形

目录
  • 前言
  • 一、简单的正弦函数与余弦函数
  • 二、进阶版正弦函数与余弦函数
    • 1.改变颜色与粗细
    • 2.设置图片边界
    • 3.设置记号
    • 4.设置记号的标签
    • 5.设置X,Y轴
    • 6.完整代码
  • 三、绘制简单的折线图
  • 总结

前言

Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。这里将会探索使用matplotlib 库实现简单的图形绘制。

一、简单的正弦函数与余弦函数

是取得正弦函数和余弦函数的值:

X 是一个 numpy 数组,包含了从 −π 到 +π 等间隔的 256 个值。C 和 S 则分别是这 256 个值对应的余弦和正弦函数值组成的 numpy 数组。

X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(X), np.sin(X)

完整代码如下

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
#绘制并显示图形
plt.plot(X, C)
plt.plot(X, S)

plt.show()

二、进阶版正弦函数与余弦函数

上面我们学习了简单的正弦函数与余弦函数,接下来我们将精益求精,改变颜色与粗细,设置记号,调整边框等。

1.改变颜色与粗细

我们以蓝色和红色分别表示余弦和正弦函数,而后将线条变粗一点。接下来,我们在水平方向拉伸一下整个图。

代码如下(示例):

figure(figsize=(10, 6), dpi=80)
plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plot(X, S, color="red",  linewidth=2.5, linestyle="-")

2.设置图片边界

代码如下(示例):

xmin, xmax = X.min(), X.max()
dx = (xmax - xmin) * 0.2
xlim(xmin - dx, xmax + dx)

3.设置记号

我们讨论正弦和余弦函数的时候,通常希望知道函数在 ±π 和 ±π2 的值。

xticks( [-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
yticks([-1, 0, +1])

4.设置记号的标签

我们可以把 3.142 当做是 π,但毕竟不够精确。当我们设置记号的时候,我们可以同时设置记号的标签。注意这里使用了 LaTeX。

xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
       [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])

yticks([-1, 0, +1],
       [r'$-1$', r'$0$', r'$+1$'])

5.设置X,Y轴

ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))

6.完整代码

# 导入 matplotlib 的所有内容(nympy 可以用 np 这个名字来使用)
from pylab import *

# 创建一个 8 * 6 点(point)的图,并设置分辨率为 80
figure(figsize=(8, 6), dpi=80)

# 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第 1 块(也是唯一的一块)
subplot(1, 1, 1)

X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)

# 绘制余弦曲线,使用蓝色的、连续的、宽度为 1 (像素)的线条
plot(X, C, color="blue", linewidth=1.0, linestyle="-")

# 绘制正弦曲线,使用绿色的、连续的、宽度为 1 (像素)的线条
plot(X, S, color="green", linewidth=1.0, linestyle="-")

# 设置横轴的上下限
xlim(-4.0, 4.0)

# 设置横轴记号
xticks(np.linspace(-4, 4, 9, endpoint=True))

# 设置纵轴的上下限
ylim(-1.0, 1.0)

# 设置纵轴记号
yticks(np.linspace(-1, 1, 5, endpoint=True))

# 以分辨率 72 来保存图片
# savefig("exercice_2.png",dpi=72)

# 设置颜色与粗细
figure(figsize=(10, 6), dpi=80)
plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plot(X, S, color="red",  linewidth=2.5, linestyle="-")
# 设置边框
xmin, xmax = X.min(), X.max()

dx = (xmax - xmin) * 0.2

xlim(xmin - dx, xmax + dx)
# 设置记号
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
yticks([-1, 0, +1])

# 设置记号的标签
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
       [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])

yticks([-1, 0, +1],
       [r'$-1$', r'$0$', r'$+1$'])

# 设置xy轴
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
# 在屏幕上显示
show()

最终效果

三、绘制简单的折线图

折线图是一种将数据点按照顺序连起来的图形,可以体现变量y随变量x的变化情况。Matplotlib 提供了plot()函数绘制折线图,其语法格式如下:

plt.plot(*args, **kwargs)

常用参数及说明如下:

  • x、y:分别表示x轴和y轴对应的数据,接收列表类型参数
  • color:表示折线的颜色
  • marker:表示折线上点的类型,有“.”、“o”、“v”等等类型
  • linestyle:表示折线的类型,默认为“-”,表示实线,设置为“--”表示长虚线,设置为“-.”表示点线,设置为“:”表示点虚线
  • linewidth:表示折线的粗细
  • alpha:表示点的透明度,接收0~1之间的小数

下面我们将以 某地区周一到周日平均温度变化折线图为例,具体的学习了解折线图的绘制。

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 8))
# 周一到周日平均温度数据
plt.plot([1,2,3,4,5,6,7], [12,11,11,13,12,10,10])
plt.show()

效果如下:

我们可以给图表添加一些标签和图例,让图表更加清晰好看,具体方法如下:

  • plt.title():指定当前图表的标题,包括名称、位置、颜色、字体大小等
  • plt.xlabel():指定当前图表x轴的名称、位置、颜色、字体大小等
  • plt.ylabel():指定当前图表y轴的名称、位置、颜色、字体大小等
  • plt.xlim():指定当前图表x轴的范围
  • plt.ylim():指定当前图表y轴的范围
  • plt.xticks():指定当前图表x轴刻度
  • plt.yticks():指定当前图表y轴刻度
import matplotlib.pyplot as plt

# 设置支持中文
plt.rcParams['font.family'] = ['SimHei']
plt.figure(figsize=(10, 8))

plt.plot([1,2,3,4,5,6,7], [12,11,11,13,12,10,10], linestyle="-", marker=".")
plt.xlabel("时间")
plt.ylabel("温度")
plt.yticks([i for i in range(20)][::5])

plt.show()

效果如下:

总结

到此这篇关于Python中如何使用Matplotlib库绘制图形的文章就介绍到这了,更多相关Python Matplotlib库绘制图形内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python绘图库Matplotlib的安装

    本文简单介绍了Python绘图库Matplotlib的安装,简介如下: matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地 进行制图.Matplotlib的安装可以参见:官网链接 http://matplotlib.org/users/installing.html 安装总结步骤如下: windows 平台上下载.exe格式 直接安装. 1.python下载安装 下载地址:http://www.python.org/download/

  • Python 绘图库 Matplotlib 入门教程

    运行环境 由于这是一个Python语言的软件包,因此需要你的机器上首先安装好Python语言的环境.关于这一点,请自行在网络上搜索获取方法. 关于如何安装Matplotlib请参见这里:Matplotlib Installing. 笔者推荐大家通过pip的方式进行安装,具体方法如下: sudo pip3 install matplotlib 本文中的源码和测试数据可以在这里获取:matplotlib_tutorial 本文的代码示例会用到另外一个Python库:NumPy.建议读者先对NumPy

  • Python编程深度学习绘图库之matplotlib

    matplotlib是python的一个开源的2D绘图库,它的原作者是John D. Hunter,因为在设计上借鉴了matlab,所以成为matplotlib.和Pillow一样是被广泛使用的绘图功能,而在深度学习相关的部分,matplotlib得宠的多.这篇文章将简单介绍一下如何安装以及使用它来画一些非常常见的统计图形. 概要信息 注意事项:由于Python2支持到2020年,很多python库都开始主要支持python3了,matplotlib的主分支也已经是python3了.而这篇文章中

  • Python绘图库Matplotlib的基本用法

    一.前言 Matplotlib是Python的绘图库,不仅具备强大的绘图功能,还能够在很多平台上使用,和Jupyter Notebook有极强的兼容性. 二.线型图 import matplotlib.pyplot as plt import numpy as np # 指定生成随机数的种子,这样每次运行得到的随机数都是相同的 np.random.seed(42) # 生成30个满足平均值为0.方差为1的正态分布的样本 x = np.random.randn(30) # plot本意有"绘制(图

  • Python中的数据可视化matplotlib与绘图库模块

    目录 一.条形图bar() 二.直方图 三.折线图 四.散点图+直线图 五.饼图 六.箱型图 七.plot函数参数 八.图像标注参数 九.Matplolib应用 matplotlib官方文档:https://matplotlib.org/stable/users/index.html matplotlib是一个绘图库,它可以创建常用的统计图,包括条形图.箱型图.折线图.散点图.饼图和直方图. 一.条形图bar() import matplotlib.pyplot as plt from matp

  • 用Python的绘图库(matplotlib)绘制小波能量谱

    时间小波能量谱 反映信号的小波能量沿时间轴的分布. 由于小波变换具有等距效应,所以有: 式中 表示信号强度,对于式①在平移因子b方向上进行加权积分 式中 代表时间-小能量谱 尺度小波能量谱 反映信号的小波能量随尺度的变化情况. 同理,对式①在尺度方向上进行加权积分: 式中 连续小波变换 连续小波变换的结果是一个小波系数矩阵,随着尺度因子和位移因子变化.然后将系数平方后得到小波能量,把每个尺度因子对应的所有小波能量进行叠加,那么就可以得到随尺度因子变换的小波能量谱曲线.把尺度换算成频率后,这条曲线

  • Python中如何使用Matplotlib库绘制图形

    目录 前言 一.简单的正弦函数与余弦函数 二.进阶版正弦函数与余弦函数 1.改变颜色与粗细 2.设置图片边界 3.设置记号 4.设置记号的标签 5.设置X,Y轴 6.完整代码 三.绘制简单的折线图 总结 前言 Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件.它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式.这里将会探索使用matplotlib 库实现简单的图形绘制. 一.简单的正弦函数与余弦函数 是取得正弦函数和余弦函数的值: X 是一个 numpy 数组,

  • 利用Python NumPy库及Matplotlib库绘制数学函数图像

    目录 前言 NumPy与Matplotlib 函数绘图 所需库函数语法 导入所需模块 一元一次函数 一元二次函数 指数函数 正弦函数 余弦函数 高级玩法 总结 前言 最近开始学习数学了,有一些题目的函数图像非常有特点,有一些函数图像手绘比较麻烦,那么有没有什么办法做出又标准又好看的数学函数图像呢? 答案是有很多的,有很多不错的软件都能画出函数图像,但是,我想到了Python的数据可视化.Python在近些年非常火热,在数据分析以及深度学习等方面得到广泛地运用,其丰富的库使其功能愈加强大. 这里我

  • Python中Numpy和Matplotlib的基本使用指南

    目录 1. Jupyter Notebooks 2. NumPy 数组 3. SciPy 稀疏数组 4. Matplotlib 总结 1. Jupyter Notebooks 作为小白,我现在使用的python编辑器是Jupyter Notebook,非常的好用,推荐!!! 你可以按[Ctrl] + [Enter]快捷键或按菜单中的运行按钮来运行单元格. 在function(后面按[shift] + [tab],可以获得函数或对象的帮助. 你还可以通过执行function?获得帮助. 2. Nu

  • 详解python中的Turtle函数库

    python对函数库的引用方式 1.import <库名> 例如:import turtle 如果需要使用库函数中的函数,需要使用:<库名>.<函数名> 例如: import turtle turtle.fd(100) 2.from <库名> import <函数名> from <库名> import  *, 使用这种方式时,直接使用<函数名> 例如:  >>>from turtle import *  

  • 如何利用Matplotlib库绘制动画及保存GIF图片

    前言 在自学机器学习或者是深度学习的过程中,有的时候总想把执行过程或者执行结果显示出来,所以就想到了动画.好在用 Python 实现动画有许多中方式,而大家熟知的 Matplotlib 库就可以实现. 本文的目的是对 Matplotlib 的动画实现手段做一个简单的说明. 绘制动画 import matplotlib.pyplot as plt import matplotlib.animation as animation 如果要让 matplotlib 实现动画功能的话,那么就要引入 ani

  • 使用matplotlib库实现图形局部数据放大显示的实践

    目录 一.绘制总体图形 二.插入局部子坐标系 三.限制局部子坐标系数据范围 四.加上方框和连接线 五.总体实现代码 一.绘制总体图形 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes from matplotlib.patches import ConnectionPatch import pandas as pd MAX_

  • Python三维绘图之Matplotlib库的使用方法

    前言 在遇到三维数据时,三维图像能给我们对数据带来更加深入地理解.python的matplotlib库就包含了丰富的三维绘图工具. 1.创建三维坐标轴对象Axes3D 创建Axes3D主要有两种方式,一种是利用关键字projection='3d'l来实现,另一种则是通过从mpl_toolkits.mplot3d导入对象Axes3D来实现,目的都是生成具有三维格式的对象Axes3D. #方法一,利用关键字 from matplotlib import pyplot as plt from mpl_

  • python中如何利用matplotlib画多个并列的柱状图

    首先如果柱状图中有中文,比如X轴和Y轴标签需要写中文,解决中文无法识别和乱码的情况,加下面这行代码就可以解决了: plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文乱码 以下总共展示了三种画不同需求的柱状图: 画多组两个并列的柱状图: import matplotlib import matplotlib.pyplot as plt import numpy as np plt.rcParams['font.sans-serif'] = ['S

  • 深入浅出Python中三个图像增强库的使用

    目录 介绍 Imgaug Albumentations SOLT 结论 介绍 本文中探索三个流行的 Python 图像增强库. 图像分类器通常在训练更多的图像时表现得更好.在图像分类模型中,一个常见的问题是,模型不能正确地对图像进行分类,只是因为它没有针对同一图像的不同方向进行训练.这可以通过向模型提供多种可能的图像方向和转换来克服. 然而,在现实中,收集这些不同的数据可能需要更多的时间.资源和专业知识,而且对公司来说成本可能很高.在这种情况下,图像数据增强是一个流行的选择,通过使用一个或多个增

  • Python中的pygal安装和绘制直方图代码分享

    有关pygal的安装,大家可以参阅<pip和pygal的安装实例教程>. 直方图: 直方图是一个特殊的条,它可以取3个数值:纵坐标高度,横坐标开始和横坐标结束. import pygal hist = pygal.Histogram() hist.add('Wide bars', [(5, 0, 10), (4, 5, 13), (2, 0, 15)]) hist.add('Narrow bars', [(10, 1, 2), (12, 4, 4.5), (8, 11, 13)]) hist.

随机推荐