浅谈C++11中的几种锁

目录
  • 互斥锁(mutex)
  • 条件锁(condition_variable)
  • 自旋锁(不推荐使用)
  • 递归锁(recursive_mutex)

互斥锁(mutex)

可以避免多个线程在某一时刻同时操作一个共享资源,标准C++库提供了std::unique_lock类模板,实现了互斥锁的RAII惯用语法:
eg:

std::unique_lock<std::mutex> lk(mtx_sync_);

条件锁(condition_variable)

条件锁就是所谓的条件变量,某一个线程因为某个条件未满足时可以使用条件变量使该程序处于阻塞状态。一旦条件满足了,即可唤醒该线程(常和互斥锁配合使用),唤醒后,需要检查变量,避免虚假唤醒。
eg:

线程1:

// wait ack
{
    std::unique_lock<std::mutex> lk(mtx_sync_);
    if (!cv_sync_.wait_for(lk, 1000ms, [this](){return sync_; })) // wait for 1s
    {
        // wait failed
        printf("wait for notify timeout [%d].\n", cnt);
        return false;
    }
    else
    {
        return true;
    }
}

线程2:

{
    std::unique_lock<std::mutex> lk(mtx_sync_);
    sync_ = true;
}
// 通知前解锁,可以避免唤醒线程后由于互斥锁的关系又进入了阻塞阶段
cv_sync_.notify_one();

自旋锁(不推荐使用)

自旋锁是一种基础的同步原语,用于保障对共享数据的互斥访问。与互斥锁的相比,在获取锁失败的时候不会使得线程阻塞而是一直自旋尝试获取锁。当线程等待自旋锁的时候,CPU不能做其他事情,而是一直处于轮询忙等的状态。自旋锁主要适用于被持有时间短,线程不希望在重新调度上花过多时间的情况。实际上许多其他类型的锁在底层使用了自旋锁实现,例如多数互斥锁在试图获取锁的时候会先自旋一小段时间,然后才会休眠。如果在持锁时间很长的场景下使用自旋锁,则会导致CPU在这个线程的时间片用尽之前一直消耗在无意义的忙等上,造成计算资源的浪费。

// 用户空间用 atomic_flag 实现自旋互斥
#include <thread>
#include <vector>
#include <iostream>
#include <atomic>
 
std::atomic_flag lock = ATOMIC_FLAG_INIT;
 
void f(int n)
{
    for (int cnt = 0; cnt < 100; ++cnt) {
        while (lock.test_and_set(std::memory_order_acquire))  // 获得锁
             ; // 自旋
        std::cout << "Output from thread " << n << '\n';
        lock.clear(std::memory_order_release);               // 释放锁
    }
}
 
int main()
{
    std::vector<std::thread> v;
    for (int n = 0; n < 10; ++n) {
        v.emplace_back(f, n);
    }
    for (auto& t : v) {
        t.join();
    }
}

递归锁(recursive_mutex)

recursive_mutex 类是同步原语,能用于保护共享数据免受从个多线程同时访问。

recursive_mutex 提供排他性递归所有权语义:

  • 调用方线程在从它成功调用 lock 或 try_lock 开始的时期里占有 recursive_mutex 。此时期间,线程可以进行对 lock 或 try_lock 的附加调用。所有权的时期在线程调用 unlock 匹配次数时结束。
  • 线程占有 recursive_mutex 时,若其他所有线程试图要求 recursive_mutex 的所有权,则它们将阻塞(对于调用 lock )或收到 false 返回值(对于调用 try_lock )。
  • 可锁定 recursive_mutex 次数的最大值是未指定的,但抵达该数后,对 lock 的调用将抛出 std::system_error 而对 try_lock 的调用将返回 false 。
  • 若 recursive_mutex 在仍为某线程占有时被销毁,则程序行为未定义。 recursive_mutex 类满足互斥 (Mutex) 和标准布局类型 (StandardLayoutType) 的所有要求。

到此这篇关于浅谈C++11中的几种锁的文章就介绍到这了,更多相关C++11 锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 利用C++11原子量如何实现自旋锁详解

    一.自旋锁 自旋锁是一种基础的同步原语,用于保障对共享数据的互斥访问.与互斥锁的相比,在获取锁失败的时候不会使得线程阻塞而是一直自旋尝试获取锁.当线程等待自旋锁的时候,CPU不能做其他事情,而是一直处于轮询忙等的状态.自旋锁主要适用于被持有时间短,线程不希望在重新调度上花过多时间的情况.实际上许多其他类型的锁在底层使用了自旋锁实现,例如多数互斥锁在试图获取锁的时候会先自旋一小段时间,然后才会休眠.如果在持锁时间很长的场景下使用自旋锁,则会导致CPU在这个线程的时间片用尽之前一直消耗在无意义的忙等

  • C++11各种锁的具体使用

    目录 Mutex(互斥锁) 什么是互斥量(锁)? 条件变量condition_variable: condition_variable的wait std::shared_mutex 原子操作 Mutex(互斥锁) 什么是互斥量(锁)? 这样比喻:单位上有一台打印机(共享数据a),你要用打印机(线程1要操作数据a),同事老王也要用打印机(线程2也要操作数据a),但是打印机同一时间只能给一个人用,此时,规定不管是谁,在用打印机之前都要向领导申请许可证(lock),用完后再向领导归还许可证(unloc

  • 详解C++11中的线程锁和条件变量

    线程 std::thread类, 位于<thread>头文件,实现了线程操作.std::thread可以和普通函数和 lambda 表达式搭配使用.它还允许向线程的执行函数传递任意多参数. #include <thread> void func() { // do some work } int main() { std::thread t(func); t.join(); return 0; } 上面的例子中,t是一个线程实例,函数func()在该线程运行.调用join()函数是

  • C++11如何实现无锁队列

    无锁操作的本质依赖的原子操作,C++11提供了atomic的原子操作支持 atomic compare_exchange_weak / compare_exchange_strong 当前值与期望值相等时,修改当前值为设定值,返回true 当前值与期望值不等时,将期望值修改为当前值,返回false memory_order枚举值 template<typename T> class lock_free_stack { private: struct node { T data; node* n

  • 浅谈C++11中的几种锁

    目录 互斥锁(mutex) 条件锁(condition_variable) 自旋锁(不推荐使用) 递归锁(recursive_mutex) 互斥锁(mutex) 可以避免多个线程在某一时刻同时操作一个共享资源,标准C++库提供了std::unique_lock类模板,实现了互斥锁的RAII惯用语法:eg: std::unique_lock<std::mutex> lk(mtx_sync_); 条件锁(condition_variable) 条件锁就是所谓的条件变量,某一个线程因为某个条件未满足

  • 浅谈SQL Server中的三种物理连接操作(性能比较)

    在SQL Server中,我们所常见的表与表之间的Inner Join,Outer Join都会被执行引擎根据所选的列,数据上是否有索引,所选数据的选择性转化为Loop Join,Merge Join,Hash Join这三种物理连接中的一种.理解这三种物理连接是理解在表连接时解决性能问题的基础,下面我来对这三种连接的原理,适用场景进行描述. 嵌套循环连接(Nested Loop Join) 循环嵌套连接是最基本的连接,正如其名所示那样,需要进行循环嵌套,嵌套循环是三种方式中唯一支持不等式连接的

  • 浅谈C++11中=delete的巧妙用法

    目录 巧妙用法 总结 C++11中,当我们定义一个类的成员函数时,如果后面使用"=delete"去修饰,那么就表示这个函数被定义为deleted,也就意味着这个成员函数不能再被调用,否则就会出错. #include <cstdio> class TestClass { public: int func(int data)=delete; }; int main(void) { TestClass obj; obj.func(100); return 0; } 编译时直接报错

  • 浅谈一下Python中5种下划线的含义

    目录 1.单前导下划线:_var 2.单末尾下划线 var_ 3. 双前导下划线 __var 4.双前导和双末尾下划线 _var_ 5.单下划线 _ 1.单前导下划线:_var 当涉及到变量和方法名称时,单个下划线前缀有一个约定俗成的含义. 它是对程序员的一个提示 - 意味着Python社区一致认为它应该是什么意思,但程序的行为不受影响. 下划线前缀的含义是告知其他程序员:以单个下划线开头的变量或方法仅供内部使用. 该约定在PEP 8中有定义. 这不是Python强制规定的. Python不像J

  • 浅谈c语言中一种典型的排列组合算法

    c语言中的全排列算法和组合数算法在实际问题中应用非常之广,但算法有许许多多,而我个人认为方法不必记太多,最好只记熟一种即可,一招鲜亦可吃遍天 全排列: #include<stdio.h> void swap(int *p1,int *p2) { int t=*p1; *p1=*p2; *p2=t; } void permutation(int a[],int index,int size) { if(index==size) { for(int i=0;i<size;i++) print

  • 浅谈java面向对象中四种权限

    俗话说没有规矩就没有方圆,java作为一门严谨的面向对象的高级编程语言,自然对权限整个重要的问题有严格的控制. Java中,可以通过一些Java关键字,来设置访问控制权限: 主要有 private(私有), package(包访问权限),protected(子类访问权限),public(公共访问权限) 在java里,这些语句都可以修饰类中的成员变量和方法,但是只有public和友好型可以修饰类.举个例子: 接下来就详细解释一下这几种权限的差别(博客最后有表格)按权限由低到高:(高权限有低权限所有

  • 浅谈function(函数)中的动态参数

    我们可向函数传递动态参数,*args,**kwargs,首先我们来看*args,示例如下: 1.show(*args) def show(*args): print(args,type(args)) #以元组的形式向列表传递参数 show(11,22,33,44,55,66) 首先我们定义了一个函数,函数show(*args)里面的*args可以接收动态参数,这里我们接收一个元组形式的参数,我们可以向show()里面传递很多参数,函数默认把这些参数作为一个元组进行接收. 2.show(**arg

  • 浅谈c++11线程的互斥量

    为什么需要互斥量 在多任务操作系统中,同时运行的多个任务可能都需要使用同一种资源.这个过程有点类似于,公司部门里,我在使用着打印机打印东西的同时(还没有打印完),别人刚好也在此刻使用打印机打印东西,如果不做任何处理的话,打印出来的东西肯定是错乱的. #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <string> #include <chrono> #include <thread>

  • 浅谈c++11闭包的实现

    什么是闭包 一个函数,带上了一个状态,就变成了闭包了.那什么叫 "带上状态" 呢? 意思是这个闭包有属于自己的变量,这些个变量的值是创建闭包的时候设置的,并在调用闭包的时候,可以访问这些变量. 函数是代码,状态是一组变量,将代码和一组变量捆绑 (bind) ,就形成了闭包. 闭包的状态捆绑,必须发生在运行时. 仿函数:重载 operator() #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <

  • 浅谈C++11的std::function源码解析

    目录 1.源码准备 2.std::function简介 3.源码解析 3.1.std::function解析 3.2.std::_Function_handler解析 3.3._Any_data解析 3.4.std::_Function_base解析 4.总结 1.源码准备 本文是基于gcc-4.9.0的源代码进行分析,std::function是C++11才加入标准的,所以低版本的gcc源码是没有std::function的,建议选择4.9.0或更新的版本去学习,不同版本的gcc源码差异应该不

随机推荐