python用pyecharts画矩形树图实例

目录
  • 一、概念介绍
  • 二、数据展示
  • 三、数据导入
  • 四、图像绘制
  • 五、树形结构
  • 总结

一、概念介绍

矩形树图(Treemap),即矩形式树状结构图,利用矩形的面积表示数值的大小,颜色用于类别区分,常用于呈现多类别的一维数值比较,易读性强;基于树状的功能,在结构图中可以同时呈现数据层次的信息。

示例如下:

· 对比常见的柱状图和条形图,矩形树图弥补了以下三个缺点:

1、当我们的数据是多类别且每个类别只有一个数值时,我们用柱状图会浪费很多的空间,而且显得单调。

2、当数据间差异较大(235 vs 18),会是对我们柱状图的纵坐标设定带来困扰,忽略极差会稀释我们小值类的差异。(当然 ,如果我们的大值只有那么一两个,可以单拎出来处理)

3、柱状图无法呈现数据间的层级结构

二、数据展示

我们的目的是为了呈现类间数值大小差异,如果有第二层,也顺便比较第二层的占比情况。

为了展示多各类别,我们利用的是省份的数据,excel表格中呈现如下:

第二层、第三层为了树状的呈现而随机生成,也是为了说明,树层结构并不要求每个节点都有枝叶。

三、数据导入

我们先绘制只有一维的,只需要输入【省份】【关注类】两个列,这个其实更常用一点(我的角度)

province_type1 = pd.DataFrame(pd.read_excel('./各省市上市公司个数/矩形树图示例.xlsx'))
tree = []
name = [province_type1['省份'][i]+'\n'+str(province_type1['关注类A'][i]) for i in range(len(province_type1))]
for i in range(len(province_type1)):
    dic = {}
    dic["value"],dic["name"] = int(province_type1['关注类A'][i]),name[i]
    tree.append(dic)

①name--列表型数据结构,用于存放每个数据的label,这里我为了同时呈现数据对应的省份和大小,中间用了换行符(不用的话,在我们的树图上是一行,不好看)

②绘制矩形树图需要的是list,list里面是字典,key名指定为"name","value"。

③一定要注意的是,如果你画出来的图没有数据或者没有显示,检查是不是读excel数据中出现了问题,即上述代码中int的位置。

用于绘制treemap的数据结构如下所示:

四、图像绘制

tm = (
      TreeMap()
      .add("关注类A",tree)
      .set_series_opts(label_opts=opts.LabelOpts(position='inside'))
      .set_global_opts(title_opts=opts.TitleOpts(title = '',subtitle = '2022/1/18-林老头ss'))
      )

tm.render('./绘图结果/矩形树图-例一.html')

position---指定label,即我们的name的位置,inside会居中显示。如果不加,默认top,在每个矩形上方显示。

结果如下所示:

由上图可知,广东省、浙江省和江苏省在随机数据中排名前三。受显示区域的限制,数据较小或名字过长的矩形往往不能显示完全,需要交互式放大其数值。

五、树形结构

在加入树形结构后,我们需要在代码中相应增加key为“children"的数据

from pyecharts.charts import Page,TreeMap
from pyecharts import options as opts
import pandas as pd
import math
province_type1 = pd.DataFrame(pd.read_excel('./矩形树图示例.xlsx'))
tree = []
name = [province_type1['省份'][i]+'\n'+str(province_type1['关注类A'][i]) for i in range(len(province_type1))]
for i in range(len(province_type1)):
    dic = {}
    dic["value"],dic["name"] = int(province_type1['关注类A'][i]),name[i]
    if math.isnan(province_type1['关注类A-1'][i]) ==0:
        dic["children"] = [
                            {"name":province_type1['省份'][i]+"A-1:"+str(province_type1['关注类A-1'][i]),"value":int(province_type1['关注类A-1'][i])},
                            {"name":province_type1['省份'][i]+"A-2:"+str(province_type1['关注类A-1'][i]),"value":int(province_type1['关注类A-2'][i])}
                         ]
    if math.isnan(province_type1['关注类A1-1'][i]) ==0:
        dic["children"][0]["children"] = [
                                        {"name":"A1-1:"+str(province_type1['关注类A1-1'][i]),"value":int(province_type1['关注类A1-1'][i])},
                                        {"name":"A1-2:"+str(province_type1['关注类A1-1'][i]),"value":int(province_type1['关注类A1-2'][i])}
                                        ]
    tree.append(dic)

tm = (
      TreeMap()
      .add("关注类A的树",tree)
      .set_series_opts(label_opts=opts.LabelOpts(position='inside'))
      .set_global_opts(title_opts=opts.TitleOpts(title = '加油呀朋友们~',subtitle = '2022/1/18-林老头ss'))
      )

tm.render('./绘图结果/矩形树图-例二.html')

如果没有枝叶的类,则不需要在"name""value"平级上加"children",如果枝叶中有两个以上类别,相当于是一个新的树,需要增加“children”,结构和树形一致,如下所示:

【“name”:“父节点”,

"value": number,

"children":【{“name”:“子节点一”,“value”:number},

{“name”:“子节点二”,“value”:number},

{“name”:“子节点三”,“value”:number}

子序列在显示区域允许的情况下,可以继续按上述结构增加。

绘制结果如下所示:

从上图我们可以看到,尽管我们为父类命名,但显示的结果只有最小类的名称和数值。

pyecharts图像交互性较强,可以通过点击不断聚焦类,放大图像,但由于不知道怎么呈现给大家,还是鼓励大家自己动手操作去探索叭~

总结

到此这篇关于python用pyecharts画矩形树图实例的文章就介绍到这了,更多相关python pyecharts画矩形树图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python pyecharts绘制柱状图

    目录 一.pyecharts绘制柱状图语法简介 二.绘制普通柱状图 三.绘制堆叠柱状图 四.绘制横向柱状图 五.pyecharts柱状图datazoom案例 六.对应pyecharts柱状图datazoom案例的代码我用page放一起了 一.pyecharts绘制柱状图语法简介 柱状/条形图,通过柱形的高度/条形的宽度来表现数据的大小. Bar.add() 方法签名: add(name, x_axis, y_axis, is_stack=False, bar_category_gap='20%'

  • Python pyecharts绘制词云图代码

    目录 一.pyecharts绘制词云图WordCloud.add()方法简介 二.绘制词云图对应轮廓按diamond显示 三.对应完整代码如下所示 一.pyecharts绘制词云图WordCloud.add()方法简介 WordCloud.add()方法简介: add(name,attr,value, shape="circle", word_gap=20, word_size_range=None, rotate_step=45) name str 图例名称 attr list 属性

  • Python pyecharts实现绘制中国地图的实例详解

    目录 实例演示 1.pyecharts 1.9.1 版本安装与数据准备 2.添加数据项,默认中国地图显示 常用配置项及参数解析 1.设置是否默认选中 2.设置地图颜色类型是否分段显示 3.缩放平移配置 4.启用和关闭图形标记 5.关闭标签名称显示 6.颜色设置:标签颜色.区域颜色.边框颜色 实例演示 先给大家看下效果图哈. 1.pyecharts 1.9.1 版本安装与数据准备 首先需要安装 pyecharts 库,直接 pip install pyecharts 就好了. 新版本的话不需要单独

  • python用pyecharts画矩形树图实例

    目录 一.概念介绍 二.数据展示 三.数据导入 四.图像绘制 五.树形结构 总结 一.概念介绍 矩形树图(Treemap),即矩形式树状结构图,利用矩形的面积表示数值的大小,颜色用于类别区分,常用于呈现多类别的一维数值比较,易读性强:基于树状的功能,在结构图中可以同时呈现数据层次的信息. 示例如下: · 对比常见的柱状图和条形图,矩形树图弥补了以下三个缺点: 1.当我们的数据是多类别且每个类别只有一个数值时,我们用柱状图会浪费很多的空间,而且显得单调. 2.当数据间差异较大(235 vs 18)

  • python用pyecharts画地图实例介绍

    版本pyecharts 分为 v0.5.X 和 v1 两个大版本,v0.5.X 和 v1 间不兼容,v1 是一个全新的版本 v0.5.X支持 Python2.7,3.4+v1仅支持 Python3.6+ 本文使用的是v1详见官方文档 数据来源只是学习方法,数据来源于网络查找 中国地图 from pyecharts.charts import Map import pyecharts.options as opts import os # 中国地图 province_distribution =

  • Python使用pyecharts绘制世界地图,省级地图,城市地图实例详解

    目录 1.世界地图绘制演示 ① 世界地图数据准备 ② 世界地图生成 2.省份(河北省)地图绘制演示 ① 省份地图数据准备 ② 省份地图生成 3.城市(承德市)地图绘制演示 ① 城市地图数据准备 ② 城市地图生成 1.世界地图绘制演示 先给大家看下效果图哈. ① 世界地图数据准备 地图数据如下: 因为是世界地图,所以对标的国家,我设置了 2 组,里面的数据是随机生成的. # -*- coding:utf-8 -*- # 2022-2-14 # 作者:小蓝枣 # pyecharts地图 # 需要引用

  • Python使用matplotlib 画矩形的三种方式分析

    本文实例讲述了Python使用matplotlib 画矩形的三种方式.分享给大家供大家参考,具体如下: 假设矩形两点坐标如下,分别为:x1, y1, x2, y2 cat_dict['bbox'][i] = (min_row, min_col, max_row, max_col) 1. plt.plot(x,y) 这种方式画的矩形 因为边距的问题 会放缩 plt.plot([cat_dict['bbox'][i][1], cat_dict['bbox'][i][3], cat_dict['bbo

  • 基于python利用Pyecharts使高清图片导出并在PPT中动态展示

    目录 1.前言 2.导出png格式图片 3.如何在PPT中展示pyecharts图片 1.前言 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化效果非常棒,为了与 Python 进行对接,方便在 Python 中直接使用数据生成图”.pyecharts可以展示动态图,在线报告使用比较美观,并且展示数据方便,鼠标悬停在图上,即可显示数值.标签等.pyecharts画出的图很好看,但是怎么展示是个

  • Python使用pyecharts控件绘制图表

    目录 一.Echarts简介 1.特性 2.相关资源: 二.使用 1.柱状图-Bar 2.饼图-Pie 3.箱体图-Boxplot 4.折线图-Line 5.雷达图-Rader 6.散点图-scatter 7.图表布局 Grid 总结 一.Echarts简介 Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可.而 Python 是一门富有表达力的语言,很适合用于数据处理.当数据分析遇上数据可视化时,pyecharts 诞生了. 分v0.5.x

  • Python 通过URL打开图片实例详解

    Python 通过URL打开图片实例详解 不论是用OpenCV还是PIL,skimage等库,在之前做图像处理的时候,几乎都是读取本地的图片.最近尝试爬虫爬取图片,在保存之前,我希望能先快速浏览一遍图片,然后有选择性的保存.这里就需要从url读取图片了.查了很多资料,发现有这么几种方法,这里做个记录. 本文用到的图片URL如下: img_src = 'http://wx2.sinaimg.cn/mw690/ac38503ely1fesz8m0ov6j20qo140dix.jpg' 1.用Open

  • Python创建二维数组实例(关于list的一个小坑)

    0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

  • python 生成器协程运算实例

    一.yield运行方式 我们定义一个如下的生成器: def put_on(name): print("Hi {}, 货物来了,准备搬到仓库!".format(name)) while True: goods = yield print("货物[%s]已经被%s搬进仓库了."%(goods,name)) p = put_on("bigberg") #输出 G:\python\install\python.exe G:/python/untitled

  • Python命令启动Web服务器实例详解

    Python命令启动Web服务器实例详解 利用Python自带的包可以建立简单的web服务器.在DOS里cd到准备做服务器根目录的路径下,输入命令: python -m Web服务器模块 [端口号,默认8000] 例如: python -m SimpleHTTPServer 8080 然后就可以在浏览器中输入 http://localhost:端口号/路径 来访问服务器资源. 例如: http://localhost:8080/index.htm(当然index.htm文件得自己创建) 其他机器

随机推荐