python 用递归实现通用爬虫解析器

我们在写爬虫的过程中,除了研究反爬之外,几乎全部的时间都在写解析逻辑。那么,生命苦短,为什么我们不写一个通用解析器呢?对啊!为什么不呢?开整!

需求分析

爬虫要解析的网页类型无外乎 html、json 以及一些二进制文件(video、excel 文件等)。既然要做成通用解析器,我们有两种实现方式,一种是将网页内容转换成统一的形式,然后用对应的解析规则去解析,比如全部将网页内容转换成 html 形式,然后用 xpath 去提取。

另外一种是配置文件预先告知的方式,你配置成什么类型,解析器就通过对应的解析规则去解析。

统一网页形式,需要做大量的网页内容形式转换,而配置文件预先告知则需要在配置时指定更多解析字段。相比较而言,通过第二种方式,未来改变较多的是配置规则,不需要动核心代码,引入 bug 的可能性较低。因此这里我们采用第二种方式实现解析器

进一步分析

解析器对于网页内容的提取,本质上和我们在本地电脑上查找和整理文件,没有什么差别。比如像下面这样

解析内容就是从中提取我们想要的信息,然后整理成我们希望的格式。比如上面的内容,我们提取出来的形式应该是这样

{
  "design": "设计图.psd",
  "software": "sketch.dmg"
}

而在实际的爬虫开发过程中,网页形式远比以上的复杂。其实遇到最多的问题是在一组列表中嵌套一个列表,我们需要把这种形式提取出来。比如像下面这种形式

{
    "a": "a",
    "b": [
        {"c": "c1", "d": "d1"},
        {"c": "c2", "d": "d2"}]
}

他提取出信息后应该是这样

[
  {
    "a": "a",
    "c": "c1",
    "d": "d1"
  },
  {
    "a": "a",
    "c": "c2",
    "d": "d2"
  }
]

如果小伙伴对于算法熟悉的话,应该能察觉出这种遍历用递归来写是非常方便的。但要注意的是 python 会限定递归的层数,小伙伴可以通过下面这个方法查看递归限定的层数

import sys
print(sys.getrecursionlimit())

>>>1000

我这边限定的层数是 1k。对于解析网页来说完全够用了,如果哪个人把网页解析逻辑嵌套了 1000 层,我建议你直接跟老板提放弃这个网页吧!

再进一步分析

我们已经知道对于通用解析来说,就是通过配置解析规则提取页面的对应信息。而针对有列表层级的网页可能还涉及递归遍历问题。那如何去配置这种解析规则呢?其实很简单,只需要在进入每一个层级之前先指定该层的数据形式,比如下面这个原数据

{
  "a": "a",
  "b": [
          {"c": "c1", "d": "d1"},
          {"c": "c2", "d" : "d2"}
       ]
}

想提取嵌套信息,我们的解析规则就应该是这样的

[
 {
  "$name": "a",
  "$value_type": "raw",
  "$parse_method": "json",
  "$parse_rule": "a",
  "$each": []
 },
 {
  "$name": "__datas__",
  "$value_type": "recursion",
  "$parse_method": "json",
  "$parse_rule": "b",
  "$each": [
        {  
         "$name": "c",
          "$value_type": "raw",
         "$parse_method": "json",
         "$parse_rule": "c",
         "$each": []
        },
        {  
         "$name": "d",
          "$value_type": "raw",
         "$parse_method": "json",
         "$parse_rule": "d",
         "$each": []
        }
      ]
 }
]

其中 $name 字段表示我们最终希望最外层数据所拥有的字段名,当然如果是需要递归到内层的字段,则将列表保存为 __datas__ ,然后根据这个 __datas__ 进行内层结构的解析。最终我们得到的数据结构应该是这样的

[
  {"a": "a", "c": "c1", "d": "d1"}, 
  {"a": "a", "c": "c2", "d": "d2"}
]

以上我们只演示了 json 的解析规则,如果要拿来解析 html 对象呢?很简单,将解析方式改为 xpath 对象,然后传入 xpath 解析语法即可。

代码实现

总共分成两部分,一部分根据原最终结果和规则进行打包,将所有涉及 recursion 逻辑的字段进行转换,代码如下

def _pack_json(result, rules):
        item = {}

        for p_rule in rules:

            if p_rule.get("$value_type") == "raw":
                if p_rule.get("$parse_method") == "json":
                    item[p_rule.get("$name")] = glom(result, p_rule.get("$parse_rule"))

            elif p_rule.get("$value_type") == "recursion":
                if p_rule.get("$parse_method") == "json":
                    tmp_result = glom(result, p_rule.get("$parse_rule"))
                    total_result = []
                    for per_r in tmp_result:
                        total_result.append(_pack_json(per_r, p_rule.get("$each")))
                    item[p_rule.get("$name")] = total_result
        return item

另外一部分将上一步得到的进行解析,将打包得到的结果进行解包,即将所有内嵌的数据提到最外层,代码如下

def _unpack_datas(result: dict) -> list:
        if "__datas__" not in result:
            return [result]

        item_results = []
        all_item = result.pop("__datas__")

        for per_item in all_item:
            if "__datas__" in per_item:
                tmp_datas = per_item.pop("__datas__")
                for per_tmp_data in tmp_datas:
                    tmp_item = _unpack_datas(per_tmp_data)
                    for per_tmp_item in tmp_item:
                        item_results.append({**per_tmp_item, **per_item})
            else:
                item_results.append({**result, **per_item})

        return item_results

后再包一层执行入口就可以了,完整代码如下

from loguru import logger

from glom import glom

def parse(result, rules):

    def _pack_json(result, rules):
        item = {}

        for p_rule in rules:

            if p_rule.get("$value_type") == "raw":
                if p_rule.get("$parse_method") == "json":
                    item[p_rule.get("$name")] = glom(result, p_rule.get("$parse_rule"))

            elif p_rule.get("$value_type") == "recursion":
                if p_rule.get("$parse_method") == "json":
                    tmp_result = glom(result, p_rule.get("$parse_rule"))
                    total_result = []
                    for per_r in tmp_result:
                        total_result.append(_pack_json(per_r, p_rule.get("$each")))
                    item[p_rule.get("$name")] = total_result
        return item

    def _unpack_datas(result: dict) -> list:
        if "__datas__" not in result:
            return [result]

        item_results = []
        all_item = result.pop("__datas__")

        for per_item in all_item:
            if "__datas__" in per_item:
                tmp_datas = per_item.pop("__datas__")
                for per_tmp_data in tmp_datas:
                    tmp_item = _unpack_datas(per_tmp_data)
                    for per_tmp_item in tmp_item:
                        item_results.append({**per_tmp_item, **per_item})
            else:
                item_results.append({**result, **per_item})

        return item_results

    pack_result = _pack_json(result, rules)
    logger.info(pack_result)
    return _unpack_datas(pack_result)

以上,就是通用解析器的完整案例。案例中仅实现了对于 json 的支持,小伙伴可以基于自己的项目,改造成其他的解析形式。通用解析其实是鸡仔为了偷懒写的,因为鸡仔发现,在爬虫开发中,大部分工作都耗在解析这部分。而有了通用解析的前端页面,运营和数据分析师就可以根据自己的需要配置自己想爬取的站点了。人生苦短,你懂得。我去摸鱼了~

实现方式请移步至 github 查看:https://github.com/hacksman/learn_lab/blob/master/small_bug_lab/general_parser.py

以上就是python 用递归实现通用爬虫解析器的详细内容,更多关于python 递归实现爬虫解析器的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python爬虫部分开篇概念讲解

    在学习Python爬虫部分,需要你已经学过Python基础和前端的相关知识. 开发环境介绍: window10 操作系统 Python解释器3.8 集成开发环境pycharm 数据的来源及作用 数据的来源有哪些? 用户产生的数据: 百度指数 政府统计的数据: 政府数据 数据管理公司: 聚合数据 自己爬取的数据: 爬取网站上的某些视频 数据的作用 数据分析 智能产品的练习数据 其他(比如买卖) 爬虫的相关概念 a) 爬虫的概念 爬虫就是应用程序,从网上下载各种各样的资源. 换句话说就是使用编程语言

  • 利用Python网络爬虫爬取各大音乐评论的代码

    python爬虫--爬取网易云音乐评论 方1:使用selenium模块,简单粗暴.但是虽然方便但是缺点也是很明显,运行慢等等等. 方2:常规思路:直接去请求服务器 1.简易看出评论是动态加载的,一定是ajax方式. 2.通过网络抓包,可以找出评论请求的的URL 得到请求的URL 3.去查看post请求所上传的数据 显然是经过加密的,现在就需要按着网易的思路去解读加密过程,然后进行模拟加密. 4.首先去查看请求是经过那些js到达服务器的 5.设置断点:依次对所发送的内容进行观察,找到评论对应的UR

  • Python爬虫之爬取2020女团选秀数据

    一.先看结果 1.1创造营2020撑腰榜前三甲 创造营2020撑腰榜前三名分别是 希林娜依·高.陈卓璇 .郑乃馨 >>>df1[df1['排名']<=3 ][['排名','姓名','身高','体重','生日','出生地']] 排名 姓名 身高 体重 生日 出生地 0 1.0 希林娜依·高 NaN NaN 1998年07月31日 新疆 1 2.0 陈卓璇 168.0 42.0 1997年08月13日 贵州 2 3.0 郑乃馨 NaN NaN 1997年06月25日 泰国 1.2青春有

  • python爬虫之你好,李焕英电影票房数据分析

    一.前言 春节档贺岁片<你好,李焕英>,于2月23日最新数据出来后,票房已经突破42亿,并且赶超其他贺岁片,成为2021的一匹黑马. 从小品演员再到导演,贾玲处女作<你好李焕英>,为何能这么火?接下来荣仔带你运用Python借助电影网站从各个角度剖析这部电影喜得高票房的原因. 二.影评爬取并词云分析 毫无疑问, 中国的电影评论伴随着整个社会文化语境的变迁以及不同场域和载体的更迭正发生着明显的变化.在纸质类影评统御了中国电影评论一百年后,又分别出现了电视影评.网络影评.新媒体影评等不

  • 用python爬虫爬取CSDN博主信息

    一.项目介绍 爬取网址:CSDN首页的Python.Java.前端.架构以及数据库栏目.简单分析其各自的URL不难发现,都是https://www.csdn.net/nav/+栏目名样式,这样我们就可以爬取不同栏目了. 以Python目录页为例,如下图所示: 爬取内容:每篇文章的博主信息,如博主姓名.码龄.原创数.访问量.粉丝数.获赞数.评论数.收藏数 (考虑到周排名.总排名.积分都是根据上述信息综合得到的,对后续分析没实质性的作用,这里暂不爬取.) 不想看代码的朋友可直接跳到第三部分~ 二.S

  • Python爬虫之教你利用Scrapy爬取图片

    Scrapy下载图片项目介绍 Scrapy是一个适用爬取网站数据.提取结构性数据的应用程序框架,它可以通过定制化的修改来满足不同的爬虫需求. 使用Scrapy下载图片 项目创建 首先在终端创建项目 # win4000为项目名 $ scrapy startproject win4000 该命令将创建下述项目目录. 项目预览 查看项目目录 win4000 win4000 spiders __init__.py __init__.py items.py middlewares.py pipelines

  • 基于python分布式爬虫并解决假死的问题

    python版本:3.5.4 系统:win10 x64 通过网页下载视频 方法一:使用urllib.retrieve函数 放函数只需要两个参数即可下载相应内容到本地,一个是网址,一个是保存位置 import urllib.request url = 'http://xxx.com/xxx.mp4' file = 'xxx.mp4' urllib.request.retrieve(url, file) 但是博主在使用过程中发现,该函数没有timeout方法.使用时,可能由于网络问题导致假死! 方法

  • python爬虫之教你如何爬取地理数据

    一.shapely模块 1.shapely shapely是python中开源的针对空间几何进行处理的模块,支持点.线.面等基本几何对象类型以及相关空间操作. 2.point→Point类 curve→LineString和LinearRing类: surface→Polygon类 集合方法分别对应MultiPoint.MultiLineString.MultiPolygon 3.导入所需模块 # 导入所需模块 from shapely import geometry as geo from s

  • python PyQt5 爬虫实现代码

    搞一个图形化界面还是挺酷的,是吧 安装库什么的应该不用多说了吧.. 一般来说会让你把 designer.exe(编辑图形化界面的东西,跟vb差不多) 当作外部工具导入到 pycharm 界面里(这里不写了),其实就是打开方便点,不做也没什么关系,没有非要从pycharm打开,界面是这样的: 还要导入一个PyUIC 工具包,这个东西好像还是导入比较好,(写文件目录的时候可能由于安装的问题找不到那个文件,我刚开始也没找到,还不如直接在C盘搜索那个东西来的直接)不然挺麻烦的.UIC 是用来把你做的图形

  • python 用递归实现通用爬虫解析器

    我们在写爬虫的过程中,除了研究反爬之外,几乎全部的时间都在写解析逻辑.那么,生命苦短,为什么我们不写一个通用解析器呢?对啊!为什么不呢?开整! 需求分析 爬虫要解析的网页类型无外乎 html.json 以及一些二进制文件(video.excel 文件等).既然要做成通用解析器,我们有两种实现方式,一种是将网页内容转换成统一的形式,然后用对应的解析规则去解析,比如全部将网页内容转换成 html 形式,然后用 xpath 去提取. 另外一种是配置文件预先告知的方式,你配置成什么类型,解析器就通过对应

  • Python HTML解析器BeautifulSoup用法实例详解【爬虫解析器】

    本文实例讲述了Python HTML解析器BeautifulSoup用法.分享给大家供大家参考,具体如下: BeautifulSoup简介 我们知道,Python拥有出色的内置HTML解析器模块--HTMLParser,然而还有一个功能更为强大的HTML或XML解析工具--BeautifulSoup(美味的汤),它是一个第三方库.简单来说,BeautifulSoup最主要的功能是从网页抓取数据.本文我们来感受一下BeautifulSoup的优雅而强大的功能吧! BeautifulSoup安装 B

  • Python Scrapy框架:通用爬虫之CrawlSpider用法简单示例

    本文实例讲述了Python Scrapy框架:通用爬虫之CrawlSpider用法.分享给大家供大家参考,具体如下: 步骤01: 创建爬虫项目 scrapy startproject quotes 步骤02: 创建爬虫模版 scrapy genspider -t quotes quotes.toscrape.com 步骤03: 配置爬虫文件quotes.py import scrapy from scrapy.spiders import CrawlSpider, Rule from scrap

  • 使用70行Python代码实现一个递归下降解析器的教程

     第一步:标记化 处理表达式的第一步就是将其转化为包含一个个独立符号的列表.这一步很简单,且不是本文的重点,因此在此处我省略了很多. 首先,我定义了一些标记(数字不在此中,它们是默认的标记)和一个标记类型: token_map = {'+':'ADD', '-':'ADD', '*':'MUL', '/':'MUL', '(':'LPAR', ')':'RPAR'} Token = namedtuple('Token', ['name', 'value']) 下面就是我用来标记 `expr` 表

  • Python参数解析器configparser简介

    目录 1.configparser介绍 2.安装: 3.获取所有的section 4.获取指定section下的option 5.获取指定section的K-V 6.获取指定value(1) 7.获取指定value(2) 8.value数据类型 9.value数据类型还原eval() 10.封装 1.configparser介绍 configparser是python自带的配置参数解析器.可以用于解析.config文件中的配置参数.ini文件中由sections(节点)-key-value组成

  • Python使用Beautiful Soup(BS4)库解析HTML和XML

    目录 一.Beautiful Soup概述: 安装: 二.BeautifulSoup4简单使用 三.BeautifulSoup4四大对象种类 1.Tag:标签 2.NavigableString:标签内部的文字 3.BeautifulSoup:文档的内容 4.Comment:注释 四.遍历文档树所用属性 五.搜索文档树 1.find_all():过滤器 (1)name参数: (2)kwargs参数: (3)attrs参数: (4)text参数: (5)limit参数: 2.find() 六.CS

  • python爬虫调度器用法及实例代码

    我们一般使用爬虫看到的都是最后的数据结果,对于整个的获取过程没有过多了解过.对于初学python的小伙伴们来说,不光是代码的练习,还是原理的分析都是必不可少的. 小编把整个爬取的过程分为了几个部分,从一开始的下载,到数据的去重解析,再到整个爬虫循环的结束,以图片和代码的双重形式展现给大家,希望能够对爬虫调度器有一个深刻的理解. 我们可以编写几个元件,每个元件完成一项功能,下图中的蓝底白字就是对这一流程的抽象: UrlManager:将存储和获取url以及url去重的几个步骤在url管理器中完成(

  • Python解析器Cpython的GIL解释器锁工作机制

    目录 本节重点 一 引子 二 GIL介绍 三 GIL与Lock 四 GIL与多线程 五 多线程性能测试 本节重点 掌握Cpython的GIL解释器锁的工作机制 掌握GIL与互斥锁 掌握Cpython下多线程与多进程各自的应用场景 本节时长需控制在45分钟内 一 引子 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing

  • 仅用500行Python代码实现一个英文解析器的教程

    语法分析器描述了一个句子的语法结构,用来帮助其他的应用进行推理.自然语言引入了很多意外的歧义,以我们对世界的了解可以迅速地发现这些歧义.举一个我很喜欢的例子: 正确的解析是连接"with"和"pizza",而错误的解析将"with"和"eat"联系在了一起: 过去的一些年,自然语言处理(NLP)社区在语法分析方面取得了很大的进展.现在,小小的 Python 实现可能比广泛应用的 Stanford 解析器表现得更出色. 文章剩下

  • python中的函数递归和迭代原理解析

    这篇文章主要介绍了python中的函数递归和迭代原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.递归 1.递归的介绍 什么是递归? 程序调用自身的编程技巧称为递归( recursion).递归做为一种算法在程序设计语言中广泛应用. 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大

随机推荐