在Python程序和Flask框架中使用SQLAlchemy的教程

ORM 江湖
曾几何时,程序员因为惧怕SQL而在开发的时候小心翼翼的写着sql,心中总是少不了恐慌,万一不小心sql语句出错,搞坏了数据库怎么办?又或者为了获取一些数据,什么内外左右连接,函数存储过程等等。毫无疑问,不搞懂这些,怎么都觉得变扭,说不定某天就跳进了坑里,叫天天不应,喊地地不答。

ORM 的出现,让畏惧SQL的开发者,在坑里看见了爬出去的绳索,仿佛天空并不是那么黑暗,至少再暗,我们也有了眼睛。顾名思义,ORM 对象关系映射,简而言之,就是把数据库的一个个table(表),映射为编程语言的class(类)。

python中比较著名的ORM框架有很多,大名顶顶的 SQLAlchemy 是python世界里当仁不让的ORM框架。江湖中peewee,strom, pyorm,SQLObject 各领风骚,可是最终还是SQLAlchemy 傲视群雄。

SQLAlchemy 简介
SQLAlchemy 分为两个部分,一共用于 ORM 的对象映射,另外一个是核心的 SQL expression 。第一个很好理解,纯粹的ORM,后面这个不是 ORM,而是DBAPI的封装,当然也提供了很多方法,避免了直接写sql,而是通过一些sql表达式。使用 SQLAlchemy 则可以分为三种方式。

  • 使用 sql expression ,通过 SQLAlchemy 的方法写sql表达式,简介的写sql
  • 使用 raw sql, 直接书写 sql
  • 使用 ORM 避开直接书写 sql

本文先探讨 SQLAlchemy的 sql expresstion 部分的用法。主要还是跟着官方的 SQL Expression Language Tutorial.介绍

为什么要学习 sql expresstion ,而不直接上 ORM?因为后面这个两个是 orm 的基础。并且,即是不使用orm,后面这两个也能很好的完成工作,并且代码的可读性更好。纯粹把SQLAlchemy当成dbapi使用。首先SQLAlchemy 内建数据库连接池,解决了连接操作相关繁琐的处理。其次,提供方便的强大的log功能,最后,复杂的查询语句,依靠单纯的ORM比较难实现。

实战
连接数据库
首先需要导入 sqlalchemy 库,然后建立数据库连接,这里使用 mysql。通过create_engine方法进行

from sqlalchemy import create_engine
engine = create_engine("mysql://root:@localhost:3306/webpy?charset=utf8",encoding="utf-8", echo=True)

create_engine 方法进行数据库连接,返回一个 db 对象。里面的参数表示

数据库类型://用户名:密码(没有密码则为空,不填)@数据库主机地址/数据库名?编码
echo = True 是为了方便 控制台 logging 输出一些sql信息,默认是False
通过这个engine对象可以直接execute 进行查询,例如 engine.execute("SELECT * FROM user") 也可以通过 engine 获取连接在查询,例如 conn = engine.connect() 通过 conn.execute()方法进行查询。两者有什么差别呢?

直接使用engine的execute执行sql的方式, 叫做connnectionless执行,
借助 engine.connect()获取conn, 然后通过conn执行sql, 叫做connection执行
主要差别在于是否使用transaction模式, 如果不涉及transaction, 两种方法效果是一样的. 官网推荐使用后者。
定义表
定义数据表,才能进行sql表达式的操作,毕竟sql表达式的表的确定,是sqlalchemy制定的,如果数据库已经存在了数据表还需要定义么?当然,这里其实是一个映射关系,如果不指定,查询表达式就不知道是附加在那个表的操作,当然定义的时候,注意表名和字段名,代码和数据的必须保持一致。定义好之后,就能创建数据表,一旦创建了,再次运行创建的代码,数据库是不会创建的。

# -*- coding: utf-8 -*-
__author__ = 'ghost'

from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey
# 连接数据库
engine = create_engine("mysql://root:@localhost:3306/webpy?charset=utf8",encoding="utf-8", echo=True)
# 获取元数据
metadata = MetaData()
# 定义表
user = Table('user', metadata,
    Column('id', Integer, primary_key=True),
    Column('name', String(20)),
    Column('fullname', String(40)),
  )

address = Table('address', metadata,
    Column('id', Integer, primary_key=True),
    Column('user_id', None, ForeignKey('user.id')),
    Column('email', String(60), nullable=False)
  )
# 创建数据表,如果数据表存在,则忽视
metadata.create_all(engine)
# 获取数据库连接
conn = engine.connect()

插入 insert
有了数据表和连接对象,对应数据库操作就简单了。

>>> i = user.insert()  # 使用查询
>>> i
<sqlalchemy.sql.dml.Insert object at 0x0000000002637748>
>>> print i # 内部构件的sql语句
INSERT INTO "user" (id, name, fullname) VALUES (:id, :name, :fullname)
>>> u = dict(name='jack', fullname='jack Jone')
>>> r = conn.execute(i, **u) # 执行查询,第一个为查询对象,第二个参数为一个插入数据字典,如果插入的是多个对象,就把对象字典放在列表里面
>>> r
<sqlalchemy.engine.result.ResultProxy object at 0x0000000002EF9390>
>>> r.inserted_primary_key # 返回插入行 主键 id
[4L]
>>> addresses
[{'user_id': 1, 'email': 'jack@yahoo.com'}, {'user_id': 1, 'email': 'jack@msn.com'}, {'user_id': 2, 'email': 'www@www.org'}, {'user_id': 2, 'email': 'wendy@aol.com'}]
>>> i = address.insert()
>>> r = conn.execute(i, addresses)  # 插入多条记录
>>> r
<sqlalchemy.engine.result.ResultProxy object at 0x0000000002EB5080>
>>> r.rowcount  #返回影响的行数
4L

>>> i = user.insert().values(name='tom', fullname='tom Jim')
>>> i.compile()
<sqlalchemy.sql.compiler.SQLCompiler object at 0x0000000002F6F390>
>>> print i.compile()
INSERT INTO "user" (name, fullname) VALUES (:name, :fullname)
>>> print i.compile().params
{'fullname': 'tom Jim', 'name': 'tom'}
>>> r = conn.execute(i)
>>> r.rowcount
1L

查询 select
查询方式很灵活,多数时候使用 sqlalchemy.sql 下面的 select方法

>>> s = select([user]) # 查询 user表
>>> s
<sqlalchemy.sql.selectable.Select at 0x25a7748; Select object>
>>> print s
SELECT "user".id, "user".name, "user".fullname
FROM "user"

如果需要查询自定义的字段,可是使用 user 的cloumn 对象,例如

>>> user.c # 表 user 的字段column对象
<sqlalchemy.sql.base.ImmutableColumnCollection object at 0x0000000002E804A8>
>>> print user.c
['user.id', 'user.name', 'user.fullname']
>>> s = select([user.c.name,user.c.fullname])
>>> r = conn.execute(s)
>>> r
<sqlalchemy.engine.result.ResultProxy object at 0x00000000025A7748>
>>> r.rowcount # 影响的行数
5L
>>> ru = r.fetchall()
>>> ru
[(u'hello', u'hello world'), (u'Jack', u'Jack Jone'), (u'Jack', u'Jack Jone'), (u'jack', u'jack Jone'), (u'tom', u'tom Jim')]
>>> r
<sqlalchemy.engine.result.ResultProxy object at 0x00000000025A7748>
>>> r.closed # 只要 r.fetchall() 之后,就会自动关闭 ResultProxy 对象
True

同时查询两个表

>>> s = select([user.c.name, address.c.user_id]).where(user.c.id==address.c.user_id)  # 使用了字段和字段比较的条件
>>> s
<sqlalchemy.sql.selectable.Select at 0x2f03390; Select object>
>>> print s
SELECT "user".name, address.user_id
FROM "user", address
WHERE "user".id = address.user_id

操作符

>>> print user.c.id == address.c.user_id # 返回一个编译的字符串
"user".id = address.user_id
>>> print user.c.id == 7
"user".id = :id_1  # 编译成为带参数的sql 语句片段字符串
>>> print user.c.id != 7
"user".id != :id_1
>>> print user.c.id > 7
"user".id > :id_1
>>> print user.c.id == None
"user".id IS NULL
>>> print user.c.id + address.c.id  # 使用两个整形的变成 +
"user".id + address.id
>>> print user.c.name + address.c.email # 使用两个字符串 变成 ||
"user".name || address.email

操作连接
这里的连接指条件查询的时候,逻辑运算符的连接,即 and or 和 not

>>> print and_(
    user.c.name.like('j%'),
    user.c.id == address.c.user_id,
    or_(
      address.c.email == 'wendy@aol.com',
      address.c.email == 'jack@yahoo.com'
    ),
    not_(user.c.id>5))
"user".name LIKE :name_1 AND "user".id = address.user_id AND (address.email = :email_1 OR address.email = :email_2) AND "user".id <= :id_1
>>>

得到的结果为 编译的sql语句片段,下面看一个完整的例子

>>> se_sql = [(user.c.fullname +", " + address.c.email).label('title')]
>>> wh_sql = and_(
       user.c.id == address.c.user_id,
       user.c.name.between('m', 'z'),
       or_(
         address.c.email.like('%@aol.com'),
         address.c.email.like('%@msn.com')
       )
     )
>>> print wh_sql
"user".id = address.user_id AND "user".name BETWEEN :name_1 AND :name_2 AND (address.email LIKE :email_1 OR address.email LIKE :email_2)
>>> s = select(se_sql).where(wh_sql)
>>> print s
SELECT "user".fullname || :fullname_1 || address.email AS title
FROM "user", address
WHERE "user".id = address.user_id AND "user".name BETWEEN :name_1 AND :name_2 AND (address.email LIKE :email_1 OR address.email LIKE :email_2)
>>> r = conn.execute(s)
>>> r.fetchall()

使用 raw sql 方式

遇到负责的sql语句的时候,可以使用 sqlalchemy.sql 下面的 text 函数。将字符串的sql语句包装编译成为 execute执行需要的sql对象。例如:、

>>> text_sql = "SELECT id, name, fullname FROM user WHERE id=:id" # 原始sql语句,参数用( :value)表示
>>> s = text(text_sql)
>>> print s
SELECT id, name, fullname FROM user WHERE id=:id
>>> s
<sqlalchemy.sql.elements.TextClause object at 0x0000000002587668>
>>> conn.execute(s, id=3).fetchall()  # id=3 传递:id参数
[(3L, u'Jack', u'Jack Jone')]

连接 join
连接有join 和 outejoin 两个方法,join 有两个参数,第一个是join 的表,第二个是on 的条件,joing之后必须要配合select_from 方法:

>>> print user.join(address)
"user" JOIN address ON "user".id = address.user_id  # 因为开启了外键 ,所以join 能只能识别 on 条件
>>> print user.join(address, address.c.user_id==user.c.id) # 手动指定 on 条件
"user" JOIN address ON address.user_id = "user".id

>>> s = select([user.c.name, address.c.email]).select_from(user.join(address, user.c.id==address.c.user_id)) # 被jion的sql语句需要用 select_from方法配合

>>> s
<sqlalchemy.sql.selectable.Select at 0x2eb63c8; Select object>
>>> print s
SELECT "user".name, address.email
FROM "user" JOIN address ON "user".id = address.user_id
>>> conn.execute(s).fetchall()
[(u'hello', u'jack@yahoo.com'), (u'hello', u'jack@msn.com'), (u'hello', u'jack@yahoo.com'), (u'hello', u'jack@msn.com'), (u'Jack', u'www@www.org'), (u'Jack', u'wendy@aol.com'), (u'Jack', u'www@www.org'), (u'Jack', u'wendy@aol.com')]

排序 分组 分页
排序使用 order_by 方法,分组是 group_by ,分页自然就是limit 和 offset两个方法配合

>>> s = select([user.c.name]).order_by(user.c.name) # order_by
>>> print s
SELECT "user".name
FROM "user" ORDER BY "user".name
>>> s = select([user]).order_by(user.c.name.desc())
>>> print s
SELECT "user".id, "user".name, "user".fullname
FROM "user" ORDER BY "user".name DESC
>>> s = select([user]).group_by(user.c.name)    # group_by
>>> print s
SELECT "user".id, "user".name, "user".fullname
FROM "user" GROUP BY "user".name
>>> s = select([user]).order_by(user.c.name.desc()).limit(1).offset(3) # limit(1).offset(3)
>>> print s
SELECT "user".id, "user".name, "user".fullname
FROM "user" ORDER BY "user".name DESC
 LIMIT :param_1 OFFSET :param_2
[(4L, u'jack', u'jack Jone')]

更新 update
前面都是一些查询,更新和插入的方法很像,都是 表下面的方法,不同的是,update 多了一个 where 方法 用来选择过滤

>>> s = user.update()
>>> print s
UPDATE "user" SET id=:id, name=:name, fullname=:fullname
>>> s = user.update().values(fullname=user.c.name)      # values 指定了更新的字段
>>> print s
UPDATE "user" SET fullname="user".name
>>> s = user.update().where(user.c.name == 'jack').values(name='ed') # where 进行选择过滤
>>> print s
UPDATE "user" SET name=:name WHERE "user".name = :name_1
>>> r = conn.execute(s)
>>> print r.rowcount     # 影响行数
3

还有一个高级用法,就是一次命令执行多个记录的更新,需要用到 bindparam 方法

>>> s = user.update().where(user.c.name==bindparam('oldname')).values(name=bindparam('newname'))  # oldname 与下面的传入的从拿书进行绑定,newname也一样
>>> print s
UPDATE "user" SET name=:newname WHERE "user".name = :oldname
>>> u = [{'oldname':'hello', 'newname':'edd'},
{'oldname':'ed', 'newname':'mary'},
{'oldname':'tom', 'newname':'jake'}]
>>> r = conn.execute(s, u)
>>> r.rowcount
5L

删除 delete
删除比较容易,调用 delete方法即可,不加 where 过滤,则删除所有数据,但是不会drop掉表,等于清空了数据表

>>> r = conn.execute(address.delete()) # 清空表
>>> print r
<sqlalchemy.engine.result.ResultProxy object at 0x0000000002EAF550>
>>> r.rowcount
8L
>>> r = conn.execute(users.delete().where(users.c.name > 'm')) # 删除记录
>>> r.rowcount
3L


flask-sqlalchemy
SQLAlchemy已经成为了python世界里面orm的标准,flask是一个轻巧的web框架,可以自由的使用orm,其中flask-sqlalchemy是专门为flask指定的插件。

安装flask-sqlalchemy

pip install flask-sqlalchemy

初始化sqlalchemy

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)

#         dialect+driver://username:password@host:port/database?charset=utf8
# 配置 sqlalchemy 数据库驱动://数据库用户名:密码@主机地址:端口/数据库?编码
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:@localhost:3306/sqlalchemy?charset=utf8'
# 初始化
db = SQLAlchemy(app)

定义model

class User(db.Model):
  """ 定义了三个字段, 数据库表名为model名小写
  """
  id = db.Column(db.Integer, primary_key=True)
  username = db.Column(db.String(80), unique=True)
  email = db.Column(db.String(120), unique=True)

  def __init__(self, username, email):
    self.username = username
    self.email = email

  def __repr__(self):
    return '<User %r>' % self.username

  def save(self):
    db.session.add(self)
    db.session.commit()

创建数据表
数据包的创建使用sqlalchemy app,如果表已经存在,则忽略,如果不存在,则新建

>>> from yourapp import db, User
>>> u = User(username='admin', email='admin@example.com') # 创建实例
>>> db.session.add(u)                   # 添加session
>>> db.session.commit()                  # 提交查询
>>> users = User.query.all()               # 查询

需要注意的是,如果要插入中文,必须插入 unicode字符串

>>> u = User(username=u'人世间', email='rsj@example.com')
>>> u.save()

定义关系
关系型数据库,最重要的就是关系。通常关系分为 一对一(例如无限级栏目),一对多(文章和栏目),多对多(文章和标签)

one to many:
我们定义一个Category(栏目)和Post(文章),两者是一对多的关系,一个栏目有许多文章,一个文章属于一个栏目。

class Category(db.Model):
  id = db.Column(db.Integer, primary_key=True)
  name = db.Column(db.String(50))

  def __init__(self, name):
    self.name = name

  def __repr__(self):
    return '<Category %r>' % self.name

class Post(db.Model):
  """ 定义了五个字段,分别是 id,title,body,pub_date,category_id
  """
  id = db.Column(db.Integer, primary_key=True)
  title = db.Column(db.String(80))
  body = db.Column(db.Text)
  pub_date = db.Column(db.String(20))
  # 用于外键的字段
  category_id = db.Column(db.Integer, db.ForeignKey('category.id'))
  # 外键对象,不会生成数据库实际字段
  # backref指反向引用,也就是外键Category通过backref(post_set)查询Post
  category = db.relationship('Category', backref=db.backref('post_set', lazy='dynamic'))

  def __init__(self, title, body, category, pub_date=None):
    self.title = title
    self.body = body
    if pub_date is None:
      pub_date = time.time()
    self.pub_date = pub_date
    self.category = category

  def __repr__(self):
    return '<Post %r>' % self.title

  def save(self):
    db.session.add(self)
    db.session.commit()

如何使用查询呢?

>>> c = Category(name='Python')
>>> c
<Category 'Python'>
>>> c.post_set
<sqlalchemy.orm.dynamic.AppenderBaseQuery object at 0x0000000003B58F60>
>>> c.post_set.all()
[]
>>> p = Post(title='hello python', body='python is cool', category=c)
>>> p.save()
>>> c.post_set
<sqlalchemy.orm.dynamic.AppenderBaseQuery object at 0x0000000003B73710>
>>> c.post_set.all()  # 反向查询
[<Post u'hello python'>]
>>> p
<Post u'hello python'>
>>> p.category
<Category u'Python'>
# 也可以使用category_id 字段来添加
>>> p = Post(title='hello flask', body='flask is cool', category_id=1)
>>> p.save()

many to many (评论已经指出,这样的做法无法关联删除,简书没有删除线格式,多多对例子作废,在此提示,以免被误导)
对于多对多的关系,往往是定义一个两个model的id的另外一张表,例如 Post 和 Tag之间是多对多,需要定义一个 Post_Tag的表

post_tag = db.Table('post_tag',
          db.Column('post_id', db.Integer, db.ForeignKey('post.id')),
          db.Column('tag_id', db.Integer, db.ForeignKey('tag.id'))
        )

class Post(db.Model):

  id = db.Column(db.Integer, primary_key=True)
  # ... 省略
  # 定义一个反向引用,tag可以通过 post_set查询到 post的集合
  tags = db.relationship('Tag', secondary=post_tag,
              backref=db.backref('post_set', lazy='dynamic'))

class Tag(db.Model):
  id = db.Column(db.Integer, primary_key=True)
  content = db.Column(db.String(10), unique=True)
  # 定义反向查询
  posts = db.relationship('Post', secondary=post_tag,
              backref=db.backref('tag_set', lazy='dynamic'))

  def __init__(self, content):
    self.content = content

  def save(self):
    db.session.add(self)
    db.session.commit()

查询:

>>> tag_list = []
>>> tags = ['python', 'flask', 'ruby', 'rails']
>>> for tag in tags:
    t = Tag(tag)
    tag_list.append(t)
>>> tag_list
[<f_sqlalchemy.Tag object at 0x0000000003B7CF28>, <f_sqlalchemy.Tag object at 0x0000000003B7CF98>, <f_sqlalchemy.Tag object at 0x0000000003B7CEB8>, <f_sqlalchemy.Tag object at 0x0000000003B7CE80>]
>>> p
<Post u'hello python'>
>>> p.tags
[]
>>> p.tags = tag_list  # 添加多对多的数据
>>> p.save()
>>> p.tags
[<f_sqlalchemy.Tag object at 0x0000000003B7CF28>, <f_sqlalchemy.Tag object at 0x0000000003B7CF98>, <f_sqlalchemy.Tag object at 0x0000000003B7CEB8>, <f_sqlalchemy.Tag object at 0x0000000003B7CE80>]
>>> p.tag_set      # 反向查询
<sqlalchemy.orm.dynamic.AppenderBaseQuery object at 0x0000000003B7C080>
>>> p.tag_set.all()
[<f_sqlalchemy.Tag object at 0x0000000003B7CF28>, <f_sqlalchemy.Tag object at 0x0000000003B7CF98>, <f_sqlalchemy.Tag object at 0x0000000003B7CEB8>, <f_sqlalchemy.Tag object at 0x0000000003B7CE80>]
>>> t = Tag.query.all()[1]
>>> t
<f_sqlalchemy.Tag object at 0x0000000003B7CF28>
>>> t.content
u'python'
>>> t.posts
[<Post u'hello python'>]
>>> t.post_set
<sqlalchemy.orm.dynamic.AppenderBaseQuery object at 0x0000000003B7C358>
>>> t.post_set.all()
[<Post u'hello python'>]
self one to one

自身一对一也是常用的需求,比如无限分级栏目

class Category(db.Model):
  id = db.Column(db.Integer, primary_key=True)
  name = db.Column(db.String(50))
  # 父级 id
  pid = db.Column(db.Integer, db.ForeignKey('category.id'))
  # 父栏目对象
  pcategory = db.relationship('Category', uselist=False, remote_side=[id], backref=db.backref('scategory', uselist=False))

  def __init__(self, name, pcategory=None):
    self.name = name
    self.pcategory = pcategory

  def __repr__(self):
    return '<Category %r>' % self.name

  def save(self):
    db.session.add(self)
    db.session.commit()

查询:

>>> p = Category('Python')
>>> p
<Category 'Python'>
>>> p.pid
>>> p.pcategory # 查询父栏目
>>> p.scategory # 查询子栏目
>>> f = Category('Flask', p)
>>> f.save()
>>> f
<Category u'Flask'>
>>> f.pid
1L
>>> f.pcategory # 查询父栏目
<Category u'Python'>
>>> f.scategory # 查询父栏目
>>> p.scategory # 查询子栏目
<Category u'Flask'>

关于 flask-sqlalchemy 定义models的简单应用就这么多,更多的技巧在于如何查询。

(0)

相关推荐

  • python之sqlalchemy创建表的实例详解

    python之sqlalchemy创建表的实例详解 通过sqlalchemy创建表需要三要素:引擎,基类,元素 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column,Integer,String 引擎:也就是实体数据库连接 engine = create_engine('mysql+pymysql://go

  • Python的Flask框架中SQLAlchemy使用时的乱码问题解决

    一.问题 这两天在学习使用flask + SQLAlchemy 定制一个web查询页面的demo ,在测试时,发现查询到的结果显示乱码 .这里将解决方法记录下. 二.解决思路 1.flask 程序上定位 flask的文档中提到可以通过设置SQLALCHEMY_NATIVE_UNICODE来禁止使用SQLAlchemy默认的Unicode编码.有可能是SQLAlchemy默认的Unicode编码不是UTF-8,抱着这样的想法,在程序中指定了"SQLALCHEMY_NATIVE_UNICODE=Fa

  • Python的SQLalchemy模块连接与操作MySQL的基础示例

    一.SQLalchemy简介 SQLAlchemy是一个开源的SQL工具包,基本Python编程语言的MIT许可证而发布的对象关系映射器.SQLAlchemy提供了"一个熟知的企业级全套持久性模式,使用ORM等独立SQLAlchemy的一个优势在于其允许开发人员首先考虑数据模型,并能决定稍后可视化数据的方式. 二.SQLAlchempy的安装 首先需安装mysql,这里就不再多说了..... 然后,下载SQLAlchemy(http://www.sqlalchemy.org/download.h

  • Python的Flask框架中使用Flask-SQLAlchemy管理数据库的教程

    使用Flask-SQLAlchemy管理数据库 Flask-SQLAlchemy是一个Flask扩展,它简化了在Flask应用程序中对SQLAlchemy的使用.SQLAlchemy是一个强大的关系数据库框架,支持一些数据库后端.提供高级的ORM和底层访问数据库的本地SQL功能. 和其他扩展一样,通过pip安装Flask-SQLAlchemy: (venv) $ pip install flask-sqlalchemy 在Flask-SQLAlchemy,数据库被指定为URL.表格列出三个最受欢

  • Python利用flask sqlalchemy实现分页效果

    Flask-sqlalchemy是关于flask一个针对数据库管理的.文中我们采用一个关于员工显示例子. 首先,我们创建SQLALCHEMY对像db. from flask import Flask, render_template,request from flask_sqlalchemy import SQLAlchemy app = Flask(__name__,static_url_path='') app.debug = True app.secret_key = "faefasdfa

  • 浅析python中SQLAlchemy排序的一个坑

    前言 SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果.最近在使用SQLAlchemy排序遇到了一个坑,所以想着总结下来,分享给更多的朋友,下面来一起看看吧. 坑的代码 query = db_session.query(UserVideo.vid, UserVideo.uid, UserVideo.v_width, UserVideo.v_heig

  • Python的Django框架中使用SQLAlchemy操作数据库的教程

    零.SQLAlchemy是什么? SQLAlchemy的官网上写着它的介绍文字: SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy 是一个非常强大的ORM和数据库工具,但是它庞大的文档和复杂的功能总是让很 多人望而生畏.而Django的ORM相对来说

  • 在Python程序和Flask框架中使用SQLAlchemy的教程

    ORM 江湖 曾几何时,程序员因为惧怕SQL而在开发的时候小心翼翼的写着sql,心中总是少不了恐慌,万一不小心sql语句出错,搞坏了数据库怎么办?又或者为了获取一些数据,什么内外左右连接,函数存储过程等等.毫无疑问,不搞懂这些,怎么都觉得变扭,说不定某天就跳进了坑里,叫天天不应,喊地地不答. ORM 的出现,让畏惧SQL的开发者,在坑里看见了爬出去的绳索,仿佛天空并不是那么黑暗,至少再暗,我们也有了眼睛.顾名思义,ORM 对象关系映射,简而言之,就是把数据库的一个个table(表),映射为编程语

  • 在Python的Flask框架中实现单元测试的教程

     概要 在前面的章节里我们专注于在我们的小应用程序上一步步的添加功能上.到现在为止我们有了一个带有数据库的应用程序,可以注册用户,记录用户登陆退出日志以及查看修改配置文件. 在本节中,我们不为应用程序添加任何新功能,相反,我们要寻找一种方法来增加我们已写代码的稳定性,我们还将创建一个测试框架来帮助我们防止将来程序中出现的失败和回滚. 让我们来找bug 在上一章的结尾谈到,我故意在应用程序中引入一个bug.接下来让我描述一下它是什么样的bug,然后看看当我们的程序不按照我们意愿执行的时候,它在其中

  • Python的Flask框架中的Jinja2模板引擎学习教程

    Flask的模板功能是基于Jinja2模板引擎来实现的.模板文件存放在当前目前下的子目录templates(一定要使用这个名字)下. main.py 代码如下: from flask import Flask, render_template app = Flask(__name__) @app.route('/hello') @app.route('/hello/<name>') def hello(name=None): return render_template('hello.html

  • Flask框架中request、请求钩子、上下文用法分析

    本文实例讲述了Flask框架中request.请求钩子.上下文用法.分享给大家供大家参考,具体如下: request 就是flask中代表当前请求的request对象: 常用的属性如下: 属性 说明 类型 data 记录请求的数据,并转换为字符串 * form 记录请求中的表单数据 MultiDict args 记录请求中的查询参数 MultiDict cookies 记录请求中的cookie信息 Dict headers 记录请求中的报文头 EnvironHeaders method 记录请求

  • Flask框架中的session设置详解

    目录 Flask中的session session设置 关于session的设置 cookies中的session session序列化机制 session反序列化机制 session的使用和验证 Flask中的session session设置 Flask除请求对象之外,还有一个 session 对象. 它允许你在不同请求间存储特定用户的信息.它是在 Cookies 的基础上实现的,并且对 Cookies 进行密钥签名要使用会话,你需要设置一个密钥. 我们知道,在django中的session

  • flask框架中的cookie和session使用

    文章介绍了flask框架中的cookie和session.Session是在服务器端保存的一个数据结构,用来跟踪用户的状态,这个数据可以保存在集群.数据库.文件中.Cookie是客户端保存用户信息的一种机制,用来记录用户的一些信息,也是实现Session的一种方式. WEB -> cookie & session 由于HTTP协议是无状态的协议,所以服务端需要记录用户的状态时,就需要用某种机制来识具体的用户,这个机制就是Session.典型的场景比如购物车,当你点击下单按钮时,由于HTTP协

  • python入门之scrapy框架中Request对象和Response对象的介绍

    目录 一.Request对象 二.发送POST请求 三.Response对象 一.Request对象 Request对象主要是用来请求数据,爬取一页的数据重新发送一个请求的时候调用,其源码类的位置如 下图所示: 这里给出其的源码,该方法有很多参数: class Request(object_ref):     def __init__(self, url, callback=None, method='GET', headers=None, body=None,                

  • 在Python的Flask框架中使用模版的入门教程

     概述 如果你已经阅读过上一个章节,那么你应该已经完成了充分的准备工作并且创建了一个很简单的具有如下文件结构的Web应用:   microblog     |-flask文件夹     |-<一些虚拟环境的文件>     |-app文件夹     |  |-static文件夹     |  |-templates文件夹     |  |-__init__.py文件     |  |-views.py文件     |-tmp文件夹     |-run.py文件 亲,想要运行这个程序么?那就运行这

  • Python的Flask框架中使用Flask-Migrate扩展迁移数据库的教程

    我们在升级系统的时候,经常碰到需要更新服务器端数据结构等操作,之前的方式是通过手工编写alter sql脚本处理,经常会发现遗漏,导致程序发布到服务器上后无法正常使用. 现在我们可以使用Flask-Migrate插件来解决之,Flask-Migrate插件是基于Alembic,Alembic是由大名鼎鼎的SQLAlchemy作者开发数据迁移工具. 具体操作如下: 1. 安装Flask-Migrate插件 $ pip install Flask-Migrate 2. 修改Flask App部分的代

随机推荐