Python迷宫生成和迷宫破解算法实例

迷宫生成

1.随机PRIM

思路:先让迷宫中全都是墙,不断从列表(最初只含有一个启始单元格)中选取一个单元格标记为通路,将其周围(上下左右)未访问过的单元格放入列表并标记为已访问,再随机选取该单元格与周围通路单元格(若有的话)之间的一面墙打通。重复以上步骤直到列表为空,迷宫生成完毕。这种方式生成的迷宫难度高,岔口多。

效果:

代码:

import random
import numpy as np
from matplotlib import pyplot as plt

def build_twist(num_rows, num_cols): # 扭曲迷宫
	# (行坐标,列坐标,四面墙的有无&访问标记)
 m = np.zeros((num_rows, num_cols, 5), dtype=np.uint8)
 r, c = 0, 0
 trace = [(r, c)]
 while trace:
  r, c = random.choice(trace)
  m[r, c, 4] = 1	# 标记为通路
  trace.remove((r, c))
  check = []
  if c > 0:
   if m[r, c - 1, 4] == 1:
    check.append('L')
   elif m[r, c - 1, 4] == 0:
    trace.append((r, c - 1))
    m[r, c - 1, 4] = 2	# 标记为已访问
  if r > 0:
   if m[r - 1, c, 4] == 1:
    check.append('U')
   elif m[r - 1, c, 4] == 0:
    trace.append((r - 1, c))
    m[r - 1, c, 4] = 2
  if c < num_cols - 1:
   if m[r, c + 1, 4] == 1:
    check.append('R')
   elif m[r, c + 1, 4] == 0:
    trace.append((r, c + 1))
    m[r, c + 1, 4] = 2
  if r < num_rows - 1:
   if m[r + 1, c, 4] == 1:
    check.append('D')
   elif m[r + 1, c, 4] == 0:
    trace.append((r + 1, c))
    m[r + 1, c, 4] = 2
  if len(check):
   direction = random.choice(check)
   if direction == 'L':	# 打通一面墙
    m[r, c, 0] = 1
    c = c - 1
    m[r, c, 2] = 1
   if direction == 'U':
    m[r, c, 1] = 1
    r = r - 1
    m[r, c, 3] = 1
   if direction == 'R':
    m[r, c, 2] = 1
    c = c + 1
    m[r, c, 0] = 1
   if direction == 'D':
    m[r, c, 3] = 1
    r = r + 1
    m[r, c, 1] = 1
 m[0, 0, 0] = 1
 m[num_rows - 1, num_cols - 1, 2] = 1
 return m

2.深度优先

思路:从起点开始随机游走并在前进方向两侧建立墙壁,标记走过的单元格,当无路可走(周围无未访问过的单元格)时重复返回上一个格子直到有新的未访问单元格可走。最终所有单元格都被访问过后迷宫生成完毕。这种方式生成的迷宫较为简单,由一条明显但是曲折的主路径和不多的分支路径组成。

效果:

代码:

def build_tortuous(num_rows, num_cols): # 曲折迷宫
 m = np.zeros((num_rows, num_cols, 5), dtype=np.uint8)
 r = 0
 c = 0
 trace = [(r, c)]
 while trace:
  m[r, c, 4] = 1	# 标记为已访问
  check = []
  if c > 0 and m[r, c - 1, 4] == 0:
   check.append('L')
  if r > 0 and m[r - 1, c, 4] == 0:
   check.append('U')
  if c < num_cols - 1 and m[r, c + 1, 4] == 0:
   check.append('R')
  if r < num_rows - 1 and m[r + 1, c, 4] == 0:
   check.append('D')
  if len(check):
   trace.append([r, c])
   direction = random.choice(check)
   if direction == 'L':
    m[r, c, 0] = 1
    c = c - 1
    m[r, c, 2] = 1
   if direction == 'U':
    m[r, c, 1] = 1
    r = r - 1
    m[r, c, 3] = 1
   if direction == 'R':
    m[r, c, 2] = 1
    c = c + 1
    m[r, c, 0] = 1
   if direction == 'D':
    m[r, c, 3] = 1
    r = r + 1
    m[r, c, 1] = 1
  else:
   r, c = trace.pop()
 m[0, 0, 0] = 1
 m[num_rows - 1, num_cols - 1, 2] = 1
 return m

迷宫破解

效果:

1.填坑法

思路:从起点开始,不断随机选择没墙的方向前进,当处于一个坑(除了来时的方向外三面都是墙)中时,退一步并建造一堵墙将坑封上。不断重复以上步骤,最终就能抵达终点。

优缺点:可以处理含有环路的迷宫,但是处理时间较长还需要更多的储存空间。

代码:

def solve_fill(num_rows, num_cols, m): # 填坑法
 map_arr = m.copy()	# 拷贝一份迷宫来填坑
 map_arr[0, 0, 0] = 0
 map_arr[num_rows-1, num_cols-1, 2] = 0
 move_list = []
 xy_list = []
 r, c = (0, 0)
 while True:
  if (r == num_rows-1) and (c == num_cols-1):
   break
  xy_list.append((r, c))
  wall = map_arr[r, c]
  way = []
  if wall[0] == 1:
   way.append('L')
  if wall[1] == 1:
   way.append('U')
  if wall[2] == 1:
   way.append('R')
  if wall[3] == 1:
   way.append('D')
  if len(way) == 0:
   return False
  elif len(way) == 1:	# 在坑中
   go = way[0]
   move_list.append(go)
   if go == 'L':	# 填坑
    map_arr[r, c, 0] = 0
    c = c - 1
    map_arr[r, c, 2] = 0
   elif go == 'U':
    map_arr[r, c, 1] = 0
    r = r - 1
    map_arr[r, c, 3] = 0
   elif go == 'R':
    map_arr[r, c, 2] = 0
    c = c + 1
    map_arr[r, c, 0] = 0
   elif go == 'D':
    map_arr[r, c, 3] = 0
    r = r + 1
    map_arr[r, c, 1] = 0
  else:
   if len(move_list) != 0:	# 不在坑中
    come = move_list[len(move_list)-1]
    if come == 'L':
     if 'R' in way:
      way.remove('R')
    elif come == 'U':
     if 'D' in way:
      way.remove('D')
    elif come == 'R':
     if 'L' in way:
      way.remove('L')
    elif come == 'D':
     if 'U' in way:
      way.remove('U')
   go = random.choice(way)	# 随机选一个方向走
   move_list.append(go)
   if go == 'L':
    c = c - 1
   elif go == 'U':
    r = r - 1
   elif go == 'R':
    c = c + 1
   elif go == 'D':
    r = r + 1
 r_list = xy_list.copy()
 r_list.reverse()	# 行动坐标记录的反转
 i = 0
 while i < len(xy_list)-1:	# 去掉重复的移动步骤
  j = (len(xy_list)-1) - r_list.index(xy_list[i])
  if i != j:	# 说明这两个坐标之间的行动步骤都是多余的,因为一顿移动回到了原坐标
   del xy_list[i:j]
   del move_list[i:j]
   r_list = xy_list.copy()
   r_list.reverse()
  i = i + 1
 return move_list

2.回溯法

思路:遇到岔口则将岔口坐标和所有可行方向压入栈,从栈中弹出一个坐标和方向,前进。不断重复以上步骤,最终就能抵达终点。

优缺点:计算速度快,需要空间小,但无法处理含有环路的迷宫。

代码:

def solve_backtrack(num_rows, num_cols, map_arr): # 回溯法
 move_list = ['R']
 m = 1	# 回溯点组号
 mark = []
 r, c = (0, 0)
 while True:
  if (r == num_rows-1) and (c == num_cols-1):
   break
  wall = map_arr[r, c]
  way = []
  if wall[0] == 1:
   way.append('L')
  if wall[1] == 1:
   way.append('U')
  if wall[2] == 1:
   way.append('R')
  if wall[3] == 1:
   way.append('D')
  come = move_list[len(move_list) - 1]
  if come == 'L':
   way.remove('R')
  elif come == 'U':
   way.remove('D')
  elif come == 'R':
   way.remove('L')
  elif come == 'D':
   way.remove('U')
  while way:
   mark.append((r, c, m, way.pop()))	# 记录当前坐标和可行移动方向
  if mark:
   r, c, m, go = mark.pop()
   del move_list[m:]	# 删除回溯点之后的移动
  else:
   return False
  m = m + 1
  move_list.append(go)
  if go == 'L':
   c = c - 1
  elif go == 'U':
   r = r - 1
  elif go == 'R':
   c = c + 1
  elif go == 'D':
   r = r + 1
 del move_list[0]
 return move_list

测试

rows = int(input("Rows: "))
cols = int(input("Columns: "))

Map = build_twist(rows, cols)
plt.imshow(draw(rows, cols, Map), cmap='gray')
fig = plt.gcf()
fig.set_size_inches(cols/10/3, rows/10/3)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
fig.savefig('aaa.png', format='png', transparent=True, dpi=300, pad_inches=0)

move = solve_backtrack(rows, cols, Map)
plt.imshow(draw_path(draw(rows, cols, Map), move), cmap='hot')
fig = plt.gcf()
fig.set_size_inches(cols/10/3, rows/10/3)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
fig.savefig('bbb.png', format='png', transparent=True, dpi=300, pad_inches=0)

以上这篇Python迷宫生成和迷宫破解算法实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径

    深度优先算法(DFS 算法)是什么? 寻找起始节点与目标节点之间路径的算法,常用于搜索逃出迷宫的路径.主要思想是,从入口开始,依次搜寻周围可能的节点坐标,但不会重复经过同一个节点,且不能通过障碍节点.如果走到某个节点发现无路可走,那么就会回退到上一个节点,重新选择其他路径.直到找到出口,或者退到起点再也无路可走,游戏结束.当然,深度优先算法,只要查找到一条行得通的路径,就会停止搜索:也就是说只要有路可走,深度优先算法就不会回退到上一步. 如果你依然在编程的世界里迷茫,可以加入我们的Python学

  • Python深度优先算法生成迷宫

    本文实例为大家分享了Python深度优先算法生成迷宫,供大家参考,具体内容如下 import random #warning: x and y confusing sx = 10 sy = 10 dfs = [[0 for col in range(sx)] for row in range(sy)] maze = [[' ' for col in range(2*sx+1)] for row in range(2*sy+1)] #1:up 2:down 3:left 4:right opera

  • Python基于分水岭算法解决走迷宫游戏示例

    本文实例讲述了Python基于分水岭算法解决走迷宫游戏.分享给大家供大家参考,具体如下: #Solving maze with morphological transformation """ usage:Solving maze with morphological transformation needed module:cv2/numpy/sys ref: 1.http://www.mazegenerator.net/ 2.http://blog.leanote.com

  • Python解决走迷宫问题算法示例

    本文实例讲述了Python解决走迷宫问题算法.分享给大家供大家参考,具体如下: 问题: 输入n * m 的二维数组 表示一个迷宫 数字0表示障碍 1表示能通行 移动到相邻单元格用1步 思路: 深度优先遍历,到达每一个点,记录从起点到达每一个点的最短步数 初始化案例: 1   1   0   1   1 1   0   1   1   1 1   0   1   0   0 1   0   1   1   1 1   1   1   0   1 1   1   1   1   1 1 把图周围加上

  • Python使用Tkinter实现机器人走迷宫

    这本是课程的一个作业研究搜索算法,当时研究了一下Tkinter,然后写了个很简单的机器人走迷宫的界面,并且使用了各种搜索算法来进行搜索,如下图: 使用A*寻找最优路径: 由于时间关系,不分析了,我自己贴代码吧.希望对一些也要用Tkinter的人有帮助. from Tkinter import * from random import * import time import numpy as np import util class Directions: NORTH = 'North' SOU

  • 一道python走迷宫算法题

    前几天逛博客时看到了这样一道问题,感觉比较有趣,就自己思考了下方案顺便用python实现了一下.题目如下: 用一个二维数组表示一个简单的迷宫,用0表示通路,用1表示阻断,老鼠在每个点上可以移动相邻的东南西北四个点,设计一个算法,模拟老鼠走迷宫,找到从入口到出口的一条路径. 如图所示: 先说下我的思路吧: 1.首先用一个列表source存储迷宫图,一个列表route_stack存储路线图,一个列表route_history存储走过的点,起点(0,0),终点(4,4). 2.老鼠在每个点都有上下左右

  • Python迷宫生成和迷宫破解算法实例

    迷宫生成 1.随机PRIM 思路:先让迷宫中全都是墙,不断从列表(最初只含有一个启始单元格)中选取一个单元格标记为通路,将其周围(上下左右)未访问过的单元格放入列表并标记为已访问,再随机选取该单元格与周围通路单元格(若有的话)之间的一面墙打通.重复以上步骤直到列表为空,迷宫生成完毕.这种方式生成的迷宫难度高,岔口多. 效果: 代码: import random import numpy as np from matplotlib import pyplot as plt def build_tw

  • Flutter随机迷宫生成和解迷宫小游戏功能的源码

    此博客旨在帮助大家更好的了解图的遍历算法,通过Flutter移动端平台将图的遍历算法运用在迷宫生成和解迷宫上,让算法变成可视化且可以进行交互,最终做成一个可进行随机迷宫生成和解迷宫的APP小游戏.本人是应届毕业生,希望能与大家一起讨论和学习- 注:由于这是本人第一次写博客,难免排版或用词上有所欠缺,请大家多多包涵. 注:如需转载文章,请注明出处,谢谢. 一.项目介绍: 1.概述 项目名:方块迷宫 作者:沫小亮. 编程框架与语言:Flutter&Dart 开发环境:Android Studio 3

  • python方法生成txt标签文件的实例代码

    1.如果想要利用代码(不论是python.c++.亦或是matlab)实现生成标签文件,首先,也是灰常重要的一件事就是你的图片集一定要是有规律的命名.数字字母顺序排开.这一点非常重要,相关重命名方法请自行百度或请教大牛. 2.如图为博主的图片集.(注意命名规律) 博主只分为猫和鸟两类. 3.看代码. 在caffe根目录下创建一个我们的工程目录my-caffe-project 创建并编辑create_db.py文件,使用如下指令: vim create_db.py 然后,代码内容就是我们的重点了.

  • 基于Python批量生成指定尺寸缩略图代码实例

    这篇文章主要介绍了基于Python批量生成指定尺寸缩略图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 最近我们商城上架的应用越来越丰富了.但在应用上传的过程中遇到这样的一个问题:每一个上架的应用需要配置一个应用封面图片,并且封面的图片大小有指定的范围:300*175.而 我们制作完的图片一般都会大于这个尺寸.所以每次手动调整大小,又让我产生了偷懒的想法,想法有了那就开始行动吧. 代码 import requests as req fr

  • python随机生成库faker库api实例详解

    废话不多说,直接上代码! # -*- coding: utf-8 -*- # @Author : FELIX # @Date : 2018/6/30 9:49 from faker import Factory # zh_CN 表示中国大陆版 fake = Factory().create('zh_CN') # 产生随机手机号 print(fake.phone_number()) # 产生随机姓名 print(fake.name()) # 产生随机地址 print(fake.address())

  • python numpy生成等差数列、等比数列的实例

    如下所示: import numpy as np # 等差数列 print(np.linspace(0.1, 1, 10, endpoint=True)) print(np.arange(0.1, 1.1, 0.1)) """总结: arange 侧重点在于增量,不管产生多少个数 linspace 侧重于num, 即要产生多少个元素,不在乎增量 """ # 等比数列 np.logspace(1, 4, 4, endpoint=True, base

  • python图的深度优先和广度优先算法实例分析

    本文实例讲述了python图的深度优先和广度优先算法.分享给大家供大家参考,具体如下: 首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为"回溯点". 深度优先算法: (1)访问初始顶点v并标记顶点v已访问. (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行:否则回溯到v,

  • PHP树的深度编历生成迷宫及A*自动寻路算法实例分析

    本文实例讲述了PHP树的深度编历生成迷宫及A*自动寻路算法.分享给大家供大家参考.具体分析如下: 有一同事推荐了三思的迷宫算法,看了感觉还不错,就转成php 三思的迷宫算法是采用树的深度遍历原理,这样生成的迷宫相当的细,而且死胡同数量相对较少! 任意两点之间都存在唯一的一条通路. 至于A*寻路算法是最大众化的一全自动寻路算法 废话不多说,贴上带代码 迷宫生成类: 复制代码 代码如下: class Maze{     // Maze Create     private $_w;     priv

  • python实现地牢迷宫生成的完整步骤

    目录 基本属性 生成房间 生成墙壁 生成门口 生成通道 总结 基本属性 定义当前地牢的等级,地图长宽,房间数量,房间的最小最大长度,如下 class Map: def __init__(self): self.width = 30 self.heigh = 30 self.level = 1 self.roomNum = 5 self.map = np.zeros((self.heigh,self.width)) self.roomMin = 3 self.roomMax = 11 生成房间 编

  • Java基于深度优先遍历的随机迷宫生成算法

    这两天因为要做一个随机的地图生成系统,所以一直在研究随机迷宫生成算法,好吧,算是有一点小小的成果. 随机迷宫生成我自己的理解简而言之分为以下几步: 1.建立一张地图,我用的二维数组表示,地图上全是障碍物.然后再创建一个用来表示每个格子是否被访问过的二维数组.再创建一个用来表示路径的栈结构. 2.随机选择地图上的一点,呃为了方便我初始点直接取的是左上角即坐标表示为0,0的格子.终点的话因为不涉及到交互就暂时没有. 3.查找当前格子的邻接格(注意,这里的邻接格子都是还未被访问的,下面的代码里有写).

随机推荐