Python使用py2neo操作图数据库neo4j的方法详解

本文实例讲述了Python使用py2neo操作图数据库neo4j的方法。分享给大家供大家参考,具体如下:

1、概念

图:数据结构中的图由节点和其之间的边组成。节点表示一个实体,边表示实体之间的联系。

图数据库:以图的结构存储管理数据的数据库。其中一些数据库将原生的图结构经过优化后直接存储,即原生图存储。还有一些图数据库将图数据序列化后保存到关系型或其他数据库中。

之所以使用图数据库存储数据是因为它在处理实体之间存在复杂关系的数据具有很大的优势。使用传统的关系型数据库在处理数据之间的关系时其实很不方便。例如查询选修一个课程的同学时需要join两个表,查询选修某个课程的同学还选修什么课程,这就需要两次join操作,当涉及到十分复杂的关系以及庞大的数据量时,关系型数据库效率十分低下。而通过图存储,可以通过节点之间的边十分便捷地查询到结果。

图模型:

节点(Node)是主要的数据元素,表示一个实体。

属性(Properties)用于描述实体的特征,以键值对的方式表示,其中键是字符串,可以对属性创建索引和约束。

关系(Relationships)表示实体之间的联系,关系具有方向,实体之间可以有多个关系,关系也可以具有属性

标签(Label)用于将实体分类,一个实体可以具有多个标签,对标签进行索引可以加速查找

2、Neo4j

Neo4j是目前最流行的图数据库,它采用原生图存储,在windows中下载安装访问如下地址https://neo4j.com/download/community-edition/。在Linux下通过如下命令下载解压

curl -O http://dist.neo4j.org/neo4j-community-3.4.5-unix.tar.gz
tar -axvf neo4j-community-3.4.5-unix.tar.gz

修改配置文件conf/neo4j.conf

# 修改第22行load csv时l路径,在前面加个#,可从任意路径读取文件
#dbms.directories.import=import
# 修改35行和36行,设置JVM初始堆内存和JVM最大堆内存
# 生产环境给的JVM最大堆内存越大越好,但是要小于机器的物理内存
dbms.memory.heap.initial_size=5g
dbms.memory.heap.max_size=10g
# 修改46行,可以认为这个是缓存,如果机器配置高,这个越大越好
dbms.memory.pagecache.size=10g
# 修改54行,去掉改行的#,可以远程通过ip访问neo4j数据库
dbms.connectors.default_listen_address=0.0.0.0
# 默认 bolt端口是7687,http端口是7474,https关口是7473,不修改下面3项也可以
# 修改71行,去掉#,设置http端口为7687,端口可以自定义,只要不和其他端口冲突就行
#dbms.connector.bolt.listen_address=:7687
# 修改75行,去掉#,设置http端口为7474,端口可以自定义,只要不和其他端口冲突就行
dbms.connector.http.listen_address=:7474
# 修改79行,去掉#,设置http端口为7473,端口可以自定义,只要不和其他端口冲突就行
dbms.connector.https.listen_address=:7473
# 去掉#,允许从远程url来load csv
dbms.security.allow_csv_import_from_file_urls=true
# 修改250行,去掉#,设置neo4j-shell端口,端口可以自定义,只要不和其他端口冲突就行
dbms.shell.port=1337
# 修改254行,设置neo4j可读可写
dbms.read_only=false

在bin目录下执行 ./neo4j start,启动服务,在浏览器http://服务器ip地址:7474/browser/可以看到neo4j的可视化界面

3、py2neo

py2neo是一个社区第三方库,通过它可以更为便捷地使用python来操作neo4j

安装py2neo:pip install py2neo,我安装的版本是4.3.0

3.1、Node与Relationship

创建节点和它们之间的关系,注意在使用下面的py2neo相关类之前首先需要import导入:

# 引入库
from py2neo import Node, Relationship
# 创建节点a、b并定义其标签为Person,属性name
a = Node("Person", name="Alice",height=166)
b = Node("Person", name="Bob")
# 节点添加标签
a.add_label('Female')
# 创建ab之间的关系
ab = Relationship(a, "KNOWS", b)
# 输出节点之间的关系:(Alice)-[:KNOWS]->(Bob)
print(ab)

Node 和 Relationship 都继承了 PropertyDict 类,类似于python的dictionary,可以通过如下方式对 Node 或 Relationship 进行属性赋值和访问

# 节点和关系添加、修改属性
a['age']=20
ab['time']='2019/09/03'
# 删除属性
del a['age']
# 打印属性
print(a[name])
# 设置默认属性,如果没有赋值,使用默认值,否则设置的新值覆盖默认值
a.setdefault('sex','unknown')
# 更新属性
a.update(age=22, sex='female')
ab.update(time='2019/09/03')

3.2、Subgraph

由节点和关系组成的集合就是子图,通过关系运算符求交集&、并集|、差集-、对称差集^

subgraph.labels返回子图中所有标签集合,keys()返回所有属性集合,nodes返回所有节点集,relationships返回所有关系集

# 构建一个子图
s = a | b | ab
# 对图中的所有节点集合进行遍历
for item in s.nodes:
  print('s的节点:', item)

通常将图中的所有节点和关系构成一个子图后再统一写入数据库,与多次写入单个节点相比效率更高

# 连接neo4j数据库,输入地址、用户名、密码
graph = Graph('http://localhost:7474', username='neo4j', password='123456')
# 将节点和关系通过关系运算符合并为一个子图,再写入数据库
s=a | b | ab
graph.create(s)

3.3、Walkable

walkable是在子图subgraph的基础上增加了遍历信息的对象,通过它可以便捷地遍历图数据库。

通过+号将关系连接起来就构成了一个walkable对象。通过walk()函数对其进行遍历,可以利用 start_node、end_node、nodes、relationships属性来获取起始 Node、终止 Node、所有 Node 和 Relationship

# 组合成一个walkable对象w
w = ab + bc + ac
# 对w进行遍历
for item in walk(w):
  print(item)
# 访问w的初始、终止节点
print('起始节点:', w.start_node, ' 终止节点:', w.end_node)
# 访问w的所有节点、关系列表
print('节点列表:', w.nodes)
print('关系列表:', w.relationships)

运行结果为:

(:Person {age: 20, name: 'Bob'})
(Bob)-[:KNOWS {}]->(Alice)
(:Person {age: 21, name: 'Alice'})
(Alice)-[:LIKES {}]->(Mike)
(:Person {name: 'Mike'})
(Bob)-[:KNOWS {}]->(Mike)
(:Person {age: 20, name: 'Bob'})
起始节点: (:Person {age: 22, name: 'Bob', sex: 'female'})  终止节点: (:Person {age: 22, name: 'Bob', sex: 'female'})
节点列表: ((:Person {age: 22, name: 'Bob', sex: 'female'}), (:Person {age: 21, name: 'Alice'}), (:Person {name: 'Mike'}), (:Person {age: 22, name: 'Bob', sex: 'female'}))
关系列表: ((Bob)-[:KNOWS {time: '2019/09/03'}]->(Alice), (Alice)-[:LIKES {}]->(Mike), (Bob)-[:KNOWS {}]->(Mike))

3.4、Graph

py2neo通过graph对象操作neo4j数据库,目前的neo4j只支持一个数据库定义一张图

通过Graph的初始化函数完成对数据库的连接并创建一个graph对象

graph.create()可以将子图写入数据库,也可以一次只写入一个节点或关系

graph.delete()删除指定子图,graph.delete_all()删除所有子图

graph.seperate()删除指定关系

# 初始化连接neo4j数据库,参数依次为url、用户名、密码
graph = Graph('http://localhost:7474', username='neo4j', password='123456')
# 写入子图w
graph.create(w)
# 删除子图w
graph.delete(w)
# 删除所有图
graph.delete_all()
# 删除关系rel
graph.separate(rel)

graph.match(nodes=None, r_type=None, limit=None)查找符合条件的关系,第一个参数为节点集合或者集合(起始节点,终止节点),如果省略代表所有节点。第二个参数为关系的属性,第三个为返回结果的数量。也可以使用match_one()代替,返回一条结果。例如查找所有节点a认识的人:

# 查找所有以a为起点,并且属性为KNOWS的关系
res = graph.match((a, ), r_type="KNOWS")
# 打印关系的终止节点,即为a所有认识的人
for rel in res:
  print(rel.end_node["name"])

使用graph.nodes.match()查找指定节点,可以使用first()、where()、order_by()等函数对查找做高级限制

还可以通过节点或关系的id查找

# 查找标签为Person,属性name="Alice"的节点,并返回第一个结果
graph.nodes.match("Person", name="Alice").first()
# 查找所有标签为Person,name以B开头的节点,并将结果按照age字段排序
res = graph.nodes.match("Person").where("_.name =~ 'B.*'").order_by('_.age')
for node in res:
  print(node['name'])
# 查找id为4的节点
t_node = graph.nodes[4]
# 查找id为196的关系
rel = graph.relationships[196]

通过Graph对象进行Cypher操作并处理返回结果

graph.evaluate()执行一个Cypher语句并返回结果的第一条数据

# 执行Cypher语句并返回结果集的第一条数据
res = graph.evaluate('MATCH (p:Person) return p')
# 输出:(_3:Person {age: 20, name: 'Bob'})
print(res)

graph.run()执行Cypher语句并返回结果数据流的游标Cursor,通过forward()方法不断向前移动游标可以向前切换结果集的每条记录Record对象

# 查询(p1)-[k]->(p2),并返回所有节点和关系
gql="MATCH (p1:Person)-[k:KNOWS]->(p2:Person) RETURN *"
cursor=graph.run(gql)
# 循环向前移动游标
while cursor.forward():
  # 获取并打印当前的结果集
  record=cursor.current
  print(record)

打印的每条Record记录对象如下所示,可以看到其中的元素是key=value的集合,通过方法get(key)可以取出具体元素。通过方法items(keys)可以将记录中指定的key按(key,value)元组的形式返回

<Record k=(xiaowang)-[:KNOWS {}]->(xiaozhang) p1=(_96:Person {name: 'xiaowang'}) p2=(_97:Person {name: 'xiaozhang'})>
  record = cursor.current
  print('通过get返回:', record.get('k'))
  for (key, value) in record.items('p1', 'p2'):
    print('通过items返回元组:', key, ':', value)
# 运行结果如下
'''
通过get返回: (xiaowang)-[:KNOWS {}]->(xiaozhang)
通过items返回元组: p1 : (_92:Person {name: 'xiaowang'})
通过items返回元组: p2 : (_93:Person {name: 'xiaozhang'})
'''

还可以将graph.run()返回的结果通过data()方法转化为字典列表,所有结果整体上是一个列表,其中每一条结果是字典的格式,其查询与结果如下,可以通过访问列表与字典的方式获取数据:

# 查询(p1)-[k]->(p2),并返回所有节点和关系
gql = "MATCH (p1:Person)-[k:KNOWS]->(p2:Person) RETURN *"
res = graph.run(gql).data()
print(res)
#结果如下:
'''
[{'k': (xiaowang)-[:KNOWS {}]->(xiaozhang),
 'p1': (_196:Person {name: 'xiaowang'}),
 'p2': (_197:Person {name: 'xiaozhang'})},
{'k': (xiaozhang)-[:KNOWS {}]->(xiaozhao),
 'p1': (_197:Person {name: 'xiaozhang'}),
 'p2': (_198:Person {name: 'xiaozhao'})},
{'k': (xiaozhao)-[:KNOWS {}]->(xiaoli),
 'p1': (_198:Person {name: 'xiaozhao'}),
 'p2': (_199:Person {name: 'xiaoli'})}
]
'''

通过graph.run().to_subgraph()方法将返回的结果转化为SubGraph对象,接着按之前操作SubGraph对象的方法取得节点对象,这里的节点对象Node可以直接按照之前的Node操作

# 查询(p1)-[k]->(p2),并返回所有节点和关系
gql = "MATCH (p1:Person)-[k:KNOWS]->(p2:Person) RETURN *"
sub_graph = graph.run(gql).to_subgraph()
# 获取子图中所有节点对象并打印
nodes=sub_graph.nodes
for node in nodes:
  print(node)
# 输出的节点对象如下:
'''
(_101:Person {name: 'xiaozhang'})
(_100:Person {name: 'xiaowang'})
(_103:Person {name: 'xiaoli'})
(_102:Person {name: 'xiaozhao'})
'''

3.5、OGM

Object-Graph Mapping将图数据库中的节点映射为python对象,通过对象的方式对节点进行访问和操作。

将图中的每种标签定义为一个python类,其继承自GraphObject,注意使用前先import。在定义时可以指定数据类的主键,并定义类的属性Property()、标签Label()、关系RelatedTo()/RelatedFrom。

from py2neo.ogm import GraphObject, Property, RelatedTo, RelatedFrom, Label
class Person(GraphObject):
  # 定义主键
  __primarykey__ = 'name'
  # 定义类的属性
  name=Property()
  age=Property()
  # 定义类的标签
  student=Label()
  # 定义Person指向的关系
  knows=RelatedTo('Person','KNOWS')
  # 定义指向Person的关系
  known=RelatedFrom('Person','KNOWN')

通过类方法wrap()可以将一个普通节点转化为类的对象。

类方法match(graph,primary_key)可以在graph中查找主键值为primary_key的节点

可以直接通过类构造方法创建一个对象,并直接访问对象的属性及方法,并通过关系方法add()添加关系

类的标签是一个bool值,默认为False,将其修改为True,即可为对象添加标签

# 将节点c转化为OGM类型
c=Person.wrap(c)
print(c.name)
# 查找Person类中主键(name)为Alice的节点
ali=Person.match(graph,'Alice').first()
# 创建一个新的Person对象并对其属性赋值
new_person = Person()
new_person.name = 'Durant'
new_person.age = 28
# 标签值默认为False
print(new_person.student)
# 修改bool值为True,为对象添加student标签
new_person.student=True
# 将修改后的图写入数据库
graph.push(ali)

在定义节点类时还可以定义其相关的关系,例如通过RelatedTo()定义从该节点指出的关系,RelatedFrom()定义指向该节点的关系。通过对象调用关系的对应的方法完成节点周围的关系操作,例如add()添加关系,clear()清除节点所有的关系,get()获取关系属性,remove()清楚指定的关系,update()更新关系

class Person(GraphObject):
  # 定义Person指向的关系
  knows=RelatedTo('Person','KNOWS')
  # 定义指向Person的关系
  known=RelatedFrom('Person','KNOWN')
# 新建一个从ali指向new_person的关系
ali.knows.add(new_person)
# 清除ali节点所有的know关系
ali.knows.clear()
# 清除ali节点指向new_person的那个know关系
ali.knows.remove(new_person)
# 更新ali指向new_person关系的属性值
ali.knows.update(new_person,year=5)
# 获取ali指向new_person关系的属性year的值
ali.knows.get(new_person,'year')

通过图对象也可以调用match方法对节点、关系进行匹配

# 获取第一个主键name名为Alice的Person对象
ali = Person.match(graph, 'Alice').first()
# 获取所有name以B开头的Person对象
Person.match(graph).where("_.name =~ 'B.*'")

也可以通过图graph对节点对象进行操作:

# 更新图中ali节点的相关数据
graph.push(ali)
# 用图中的信息来更新ali节点
graph.pull(ali)
# 删除图中的ali对象节点
graph.delete(ali)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python常见数据库操作技巧汇总》、《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python的Flask框架与数据库连接的教程

     命令行方式运行Python脚本 在这个章节中,我们将写一些简单的数据库管理脚本.在此之前让我们来复习一下如何通过命令行方式执行Python脚本. 如果Linux 或者OS X的操作系统,需要有执行脚本的权限.例如: chmod a+x script.py 该脚本有个指向使用解释器的命令行.再脚本赋予执行权限后就可以通过命令行执行,就像这样: like this: ./script.py <arguments> 然而,在Windows系统上这样做是不行的,你必须提供Python解释器作为必选参

  • Python实现批量读取图片并存入mongodb数据库的方法示例

    本文实例讲述了Python实现批量读取图片并存入mongodb数据库的方法.分享给大家供大家参考,具体如下: 我的图片放在E:\image\中,然后使用python将图片读取然后,显示一张,存入取一张(可以注释掉显示图片的语句),通过Gridfs的方式存入图片.代码如下: # --* coding=utf-8 *-- from cStringIO import StringIO from pymongo import MongoClient import gridfs import os imp

  • python连接oracle数据库实例

    本文实例讲述了python连接oracle数据库的方法,分享给大家供大家参考.具体步骤如下: 一.首先下载驱动:(cx_Oracle) http://www.python.net/crew/atuining/cx_Oracle/ 不过要注意一下版本,根据你的情况加以选择. 二.安装: 首先配置oracle_home环境变量 执行那个exe安装程序就可以了,它会copy一个cx_Oracle.pyd到Libsite-packages目录下. 如果是linux,执行 复制代码 代码如下: pytho

  • python连接mongodb操作数据示例(mongodb数据库配置类)

    一.相关代码数据库配置类 MongoDBConn.py 复制代码 代码如下: #encoding=utf-8''' Mongo Conn连接类''' import pymongo class DBConn:    conn = None    servers = "mongodb://localhost:27017" def connect(self):        self.conn = pymongo.Connection(self.servers) def close(self

  • python3+PyQt5使用数据库表视图

    上文提到窗体可以一次性呈现出来自同一记录的各个域,但是对于用户希望能看到多条记录的表来说,就需要使用表格化的视图了.本文通过python3+pyqt5改写实现了python Qt gui 快速变成15章的例子,用户能够一次看到多条记录. #!/usr/bin/env python3 import os import sys from PyQt5.QtCore import (PYQT_VERSION_STR, QDate, QFile, QRegExp, QVariant, QModelInde

  • python Django连接MySQL数据库做增删改查

    1.下载安装MySQLdb类库http://www.djangoproject.com/r/python-mysql/2.修改settings.py 配置数据属性 复制代码 代码如下: DATABASES = {    'default': {        'ENGINE': 'django.db.backends.mysql', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'.        'NAME': 'djang

  • python 读取数据库并绘图的实例

    1.安装相应的库文件 sudo apt-get install python-mysqldb 2.数据库操作 import MySQLdb db = MySQLdb.connect("localhost", "root", "pwd", "dbname", charset='utf8' ) 数据库的查询 #加入参数表示查询返回的是一个键值数组而不是默认的元组 cursor = db.cursor(cursorclass = M

  • Python读写Redis数据库操作示例

    使用Python如何操作Redis呢?下面用实例来说明用Python读写Redis数据库.比如,我们插入一条数据,如下: 复制代码 代码如下: import redis class Database:      def __init__(self):          self.host = 'localhost'          self.port = 6379 def write(self,website,city,year,month,day,deal_number):         

  • Python操作MySQL数据库9个实用实例

    在Windows平台上安装mysql模块用于Python开发 用python连接mysql的时候,需要用的安装版本,源码版本容易有错误提示.下边是打包了32与64版本. MySQL-python-1.2.3.win32-py2.7.exe MySQL-python-1.2.3.win-amd64-py2.7.exe 实例 1.取得 MYSQL 的版本 # -*- coding: UTF-8 -*- #安装 MYSQL DB for python import MySQLdb as mdb con

  • python爬取NUS-WIDE数据库图片

    实验室需要NUS-WIDE数据库中的原图,数据集的地址为http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm   由于这个数据只给了每个图片的URL,所以需要一个小爬虫程序来爬取这些图片.在图片的下载过程中建议使用VPN.由于一些URL已经失效,所以会下载一些无效的图片. # PYTHON 2.7 Ubuntu 14.04 nuswide = "$NUS-WIDE-urls_ROOT" #the location of your nus-wi

  • python聚类算法解决方案(rest接口/mpp数据库/json数据/下载图片及数据)

    1. 场景描述 一直做java,因项目原因,需要封装一些经典的算法到平台上去,就一边学习python,一边网上寻找经典算法代码,今天介绍下经典的K-means聚类算法,算法原理就不介绍了,只从代码层面进行介绍,包含:rest接口.连接mpp数据库.回传json数据.下载图片及数据. 2. 解决方案 2.1 项目套路 (1)python经典算法是单独的服务器部署,提供rest接口出来,供java平台调用,交互的方式是http+json: (2)数据从mpp数据库-Greenplum中获取: (3)

  • python3+PyQt5使用数据库窗口视图

    能够为数据库数据提供的最简单的用户界面之一就是窗体,窗体可以一次性呈现出来自同一记录的各个域.本文通过python3+pyqt5改写实现了python Qt gui 快速变成15章的例子. #!/usr/bin/env python3 import os import sys from PyQt5.QtCore import (QDate, QDateTime, QFile, QVariant, Qt) from PyQt5.QtWidgets import (QApplication, QDa

随机推荐