tensorflow中tf.slice和tf.gather切片函数的使用

tf.slice(input_, begin, size, name=None):按照指定的下标范围抽取连续区域的子集

tf.gather(params, indices, validate_indices=None, name=None):按照指定的下标集合从axis=0中抽取子集,适合抽取不连续区域的子集

输出:

input = [[[1, 1, 1], [2, 2, 2]],
   [[3, 3, 3], [4, 4, 4]],
   [[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
           [4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
           [[5, 5, 5]]]

tf.gather(input, [0, 2]) ==> [[[1, 1, 1], [2, 2, 2]],
        [[5, 5, 5], [6, 6, 6]]]

假设我们要从input中抽取[[[3, 3, 3]]],这个输出在inputaxis=0的下标是1,axis=1的下标是0,axis=2的下标是0-2,所以begin=[1,0,0],size=[1,1,3]。

假设我们要从input中抽取[[[3, 3, 3], [4, 4, 4]]],这个输出在inputaxis=0的下标是1,axis=1的下标是0-1,axis=2的下标是0-2,所以begin=[1,0,0],size=[1,2,3]。

假设我们要从input中抽取[[[3, 3, 3], [5, 5, 5]]],这个输出在inputaxis=0的下标是1-2,axis=1的下标是0,axis=2的下标是0-2,所以begin=[1,0,0],size=[2,1,3]。

假设我们要从input中抽取[[[1, 1, 1], [2, 2, 2]],[[5, 5, 5], [6, 6, 6]]],这个输出在input的axis=0的下标是[0, 2],不连续,可以用tf.gather抽取。input[0]和input[2]

以上这篇tensorflow中tf.slice和tf.gather切片函数的使用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow实现tensor中满足某一条件的数值取出组成新的tensor

    首先使用tf.where()将满足条件的数值索引取出来,在numpy中,可以直接用矩阵引用索引将满足条件的数值取出来,但是在tensorflow中这样是不行的.所幸,tensorflow提供了tf.gather()和tf.gather_nd()函数. 看下面这一段代码: import tensorflow as tf sess = tf.Session() def get_tensor(): x = tf.random_uniform((5, 4)) ind = tf.where(x>0.5)

  • 浅谈tensorflow中张量的提取值和赋值

    tf.gather和gather_nd从params中收集数值,tf.scatter_nd 和 tf.scatter_nd_update用updates更新某一张量.严格上说,tf.gather_nd和tf.scatter_nd_update互为逆操作. 已知数值的位置,从张量中提取数值:tf.gather, tf.gather_nd tf.gather indices每个元素(标量)是params某个axis的索引,tf.gather_nd 中indices最后一个阶对应于索引值. tf.ga

  • 关于tensorflow的几种参数初始化方法小结

    在tensorflow中,经常会遇到参数初始化问题,比如在训练自己的词向量时,需要对原始的embeddigs矩阵进行初始化,更一般的,在全连接神经网络中,每层的权值w也需要进行初始化. tensorlfow中应该有一下几种初始化方法 1. tf.constant_initializer() 常数初始化 2. tf.ones_initializer() 全1初始化 3. tf.zeros_initializer() 全0初始化 4. tf.random_uniform_initializer()

  • tensorflow中tf.slice和tf.gather切片函数的使用

    tf.slice(input_, begin, size, name=None):按照指定的下标范围抽取连续区域的子集 tf.gather(params, indices, validate_indices=None, name=None):按照指定的下标集合从axis=0中抽取子集,适合抽取不连续区域的子集 输出: input = [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]] tf.slice(

  • Tensorflow中的图(tf.Graph)和会话(tf.Session)的实现

    Tensorflow编程系统 Tensorflow工具或者说深度学习本身就是一个连贯紧密的系统.一般的系统是一个自治独立的.能实现复杂功能的整体.系统的主要任务是对输入进行处理,以得到想要的输出结果.我们之前见过的很多系统都是线性的,就像汽车生产工厂的流水线一样,输入->系统处理->输出.系统内部由很多单一的基本部件构成,这些单一部件具有特定的功能,且需要稳定的特性:系统设计者通过特殊的连接方式,让这些简单部件进行连接,以使它们之间可以进行数据交流和信息互换,来达到相互配合而完成具体工作的目的

  • Tensorflow中k.gradients()和tf.stop_gradient()用法说明

    上周在实验室开荒某个代码,看到中间这么一段,对Tensorflow中的stop_gradient()还不熟悉,特此周末进行重新并总结. y = xx + K.stop_gradient(rounded - xx) 这代码最终调用位置在tensoflow.python.ops.gen_array_ops.stop_gradient(input, name=None),关于这段代码为什么这样写的意义在文末给出. [stop_gradient()意义] 用stop_gradient生成损失函数w.r.

  • 在TensorFlow中实现矩阵维度扩展

    一般TensorFlow中扩展维度可以使用tf.expand_dims().近来发现另一种可以直接运用取数据操作符[]就能扩展维度的方法. 用法很简单,在要扩展的维度上加上tf.newaxis就行了. foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[:, tf.newaxis, :].eva

  • 关于Tensorflow中的tf.train.batch函数的使用

    这两天一直在看tensorflow中的读取数据的队列,说实话,真的是很难懂.也可能我之前没这方面的经验吧,最早我都使用的theano,什么都是自己写.经过这两天的文档以及相关资料,并且请教了国内的师弟.今天算是有点小感受了.简单的说,就是计算图是从一个管道中读取数据的,录入管道是用的现成的方法,读取也是.为了保证多线程的时候从一个管道读取数据不会乱吧,所以这种时候 读取的时候需要线程管理的相关操作.今天我实验室了一个简单的操作,就是给一个有序的数据,看看读出来是不是有序的,结果发现是有序的,所以

  • Tensorflow中tf.ConfigProto()的用法详解

    参考Tensorflow Machine Leanrning Cookbook tf.ConfigProto()主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算 具体代码如下: import tensorflow as tf session_config = tf.ConfigProto( log_device_placement=True, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0,

  • 浅谈tensorflow 中tf.concat()的使用

    concat()是将tensor沿着指定维度连接起来.其中tensorflow1.3版中是这样定义的: concat(values,axis,name='concat') 一.对于2维来说,0表示行,1表示列 t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] with tf.Session() as sess: print(sess.run(tf.concat([t1, t2], 0) )) 结果为:[[1, 2, 3], [4

  • tensorflow实现读取模型中保存的值 tf.train.NewCheckpointReader

    使用tf.trian.NewCheckpointReader(model_dir) 一个标准的模型文件有一下文件, model_dir就是MyModel(没有后缀) checkpoint Model.meta Model.data-00000-of-00001 Model.index import tensorflow as tf import pprint # 使用pprint 提高打印的可读性 NewCheck =tf.train.NewCheckpointReader("model&quo

  • 对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

    在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律. 1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解: Computes a 1-D convolution given 3-D input and filter tensors. Given an input tensor of shape [batch, in_wi

  • Tensorflow中的降维函数tf.reduce_*使用总结

    在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总 1.tf.reduce_sum tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None) 参数: input_tensor:要减少的张量.应该有数字类型. axis:要减小的尺寸.如果为None(默认),则缩小所有尺寸.必须在范围[-rank(in

随机推荐