python matplotlib 画dataframe的时间序列图实例
在python中经常会用到pandas来处理数据,最常用的数据类型是dataframe,但是有时候在dataframe有时间字段需要画时间序列图的时候会遇到一些问题,下面是我处理这个问题的一个小案例,希望可以帮到在坑里的小朋友哦,开个小玩笑。
code as fallows:
doc_list = [] doc_target = doc.iloc[:, 141:142] for i in doc.iloc[:, 3:4].values.tolist(): for j in i: doc_list.append(datetime.datetime.strptime(j, "%Y-%m-%d %H:%M:%S")) data = np.hstack( [np.array(doc_list).reshape((-1, 1)), np.array(doc_target)[:, -1:].astype("float").reshape((-1, 1))])
其中doc为dataframe,时间字段为时间戳
以上这篇python matplotlib 画dataframe的时间序列图实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
对pandas的dataframe绘图并保存的实现方法
对dataframe绘图并保存: ax = df.plot() fig = ax.get_figure() fig.savefig('fig.png') 可以制定列,对该列各取值作统计: label_dis = df.label.value_counts() ax = label_dis.plot(title='label distribution', kind='bar', figsize=(18, 12)) fig = ax.get_figure() fig.savefig('label_d
-
Python实现时间序列可视化的方法
时间序列数据在数据科学领域无处不在,在量化金融领域也十分常见,可以用于分析价格趋势,预测价格,探索价格行为等. 学会对时间序列数据进行可视化,能够帮助我们更加直观地探索时间序列数据,寻找其潜在的规律. 本文会利用Python中的matplotlib[1]库,并配合实例进行讲解.matplotlib库是一个用于创建出版质量图表的桌面绘图包(2D绘图库),是Python中最基本的可视化工具. [工具]Python 3 [数据]Tushare [注]示例注重的是方法的讲解,请大家灵活掌握. 1.单个时
-
python时间日期函数与利用pandas进行时间序列处理详解
python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 下面我们先简单的了解下python日期和时间数据类型及工具 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime impo
-
Python使用matplotlib和pandas实现的画图操作【经典示例】
本文实例讲述了Python使用matplotlib和pandas实现的画图操作.分享给大家供大家参考,具体如下: 画图在工作再所难免,尤其在做数据探索时候,下面总结了一些关于python画图的例子 #encoding:utf-8 ''''' Created on 2015年9月11日 @author: ZHOUMEIXU204 ''' # pylab 是 matplotlib 面向对象绘图库的一个接口.它的语法和 Matlab 十分相近 import pandas as pd #from ggp
-
python matplotlib 画dataframe的时间序列图实例
在python中经常会用到pandas来处理数据,最常用的数据类型是dataframe,但是有时候在dataframe有时间字段需要画时间序列图的时候会遇到一些问题,下面是我处理这个问题的一个小案例,希望可以帮到在坑里的小朋友哦,开个小玩笑. code as fallows: doc_list = [] doc_target = doc.iloc[:, 141:142] for i in doc.iloc[:, 3:4].values.tolist(): for j in i: doc_list
-
使用python matplotlib画折线图实例代码
目录 matplotlib简介 1.画折线图[一条示例] 2.画折线图带数据标签 3.画多条折线图: 4.画多条折线图分别带数据标签: 总结 matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基
-
python之matplotlib学习绘制动态更新图实例代码
简介 通过定时器Timer触发事件,定时更新绘图,可以形成动态更新图片.下面的实例是学习<matplotlib for python developers>一文的笔记. 实现 实现代码及简单介绍 通过self.user = self.user[1:] + [temp],每次删除列表的第一元素,在其尾部添加新的元素.这样完成user数据的动态更新.其他详细的解释见文中的注释部分. #-*-coding:utf-8-*- import wx from matplotlib.figure impor
-
python matplotlib画盒图、子图解决坐标轴标签重叠的问题
在使用matplotlib画图的时候将常会出现坐标轴的标签太长而出现重叠的现象,本文主要通过自身测过好用的解决办法进行展示,希望也能帮到大家,原图出现重叠现象例如图1: 代码为: data1=[[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765]] data
-
使用python实现画AR模型时序图
背景: 用python画AR模型的时序图. 结果: 代码: import numpy as np import matplotlib.pyplot as plt """ AR(1)的时序图:x[t]=a*x[t-1]+e """ num = 2000 e = np.random.rand(num) x = np.empty(num) """ 平稳AR(1) """ a = -0.5 x[
-
python matplotlib实现将图例放在图外
关于matplotlib如何设置图例的位置?如何将图例放在图外?以及如何在一幅图有多个子图的情况下,删除重复的图例?我用一个简单的例子说明一下. import pandas as pd import numpy as np import matplotlib.pyplot as plt fig = plt.figure(1) ax1 = fig.add_subplot(2,2,1) ax2 = fig.add_subplot(2,2,2) ax3 = fig.add_subplot(2,2,3)
-
Python+matplotlib绘制饼图和堆叠图
目录 一.pie()函数用来绘制饼图 二.一个简单的例子 三. 堆叠图 饼图常用于统计学模块,画饼图用到的方法为:pie( ) 一.pie()函数用来绘制饼图 pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None,
-
python matplotlib实现双Y轴的实例
如下所示: import matplotlib.pyplot as plt import numpy as np x = np.arange(0., np.e, 0.01) y1 = np.exp(-x) y2 = np.log(x) fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(x, y1,'r',label="right"); ax1.legend(loc=1) ax1.set_ylabel('Y values for
-
Python matplotlib画曲线例题解析
这篇文章主要介绍了Python matplotlib画曲线例题解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 初学者,练习以下片段: 代码1:用 一元一次函数 画直线 import matplotlib.pyplot as plt import numpy as np x = np.linspace(-2, 2, 50) print(x) y = 2*x + 1 plt.plot(x, y) ax = plt.gca() ax.spines
-
Python matplotlib可视化之绘制韦恩图
目录 本文速览 1.matplotlib_venn (1)2组数据venn图 (2)3组数据venn图 2.pyvenn 2组数据venn 3组数据venn 4组数据venn 5组数据venn 6组数据venn 本文速览 2组数据venn 3组数据venn 4组数据venn 5组数据venn图 6组数据venn python中Matplotlib并没有现成的函数可直接绘制venn图, 不过已经有前辈基于matplotlib.patches及matplotlib.path开发了两个轮子: matp
随机推荐
- 抓住用户碎片时间推广 一天突破10000+流量
- JS实现状态栏跑马灯文字效果代码
- js实现无缝滚动特效
- js自定义事件代码说明
- 简单的移动设备检测PHP脚本代码
- php && 逻辑与运算符使用说明
- js获取某元素的class里面的css属性值代码
- linux crontab实例分析
- 将Oracle数据库中的数据写入Excel
- python读取Android permission文件
- jQuery插件uploadify实现ajax效果的图片上传
- 点弹代码 点击页面任何位置都可以弹出页面效果代码
- Linux破解root密码的教程
- 举例讲解Java设计模式中的对象池模式编程
- Android之使用Android-query框架开发实战(一)
- c#同步两个子目录文件示例分享 两个文件夹同步
- Android开发之Android studio的安装与使用
- python基础教程项目五之虚拟茶话会
- 深入讲解spring boot中servlet的启动过程与原理
- 解决Layui 表单提交数据为空的问题