pytorch-autograde-计算图的特点说明

在PyTorch实现中,autograd会随着用户的操作,记录生成当前variable的所有操作,并由此建立一个有向无环图。用户每进行一个操作,相应的计算图就会发生改变。

更底层的实现中,图中记录了操作Function,每一个变量在图中的位置可通过其grad_fn属性在图中的位置推测得到。在反向传播过程中,autograd沿着这个图从当前变量(根节点\textbf{z}z)溯源,可以利用链式求导法则计算所有叶子节点的梯度。

每一个前向传播操作的函数都有与之对应的反向传播函数用来计算输入的各个variable的梯度,这些函数的函数名通常以Backward结尾。

下面结合代码学习autograd的实现细节。

在PyTorch中计算图的特点可总结如下:

autograd根据用户对variable的操作构建其计算图。对变量的操作抽象为Function

对于那些不是任何函数(Function)的输出,由用户创建的节点称为叶子节点,叶子节点的grad_fn为None。叶子节点中需要求导的variable,具有AccumulateGrad标识,因其梯度是累加的

variable默认是不需要求导的,即requires_grad属性默认为False,如果某一个节点requires_grad被设置为True,那么所有依赖它的节点requires_grad都为True

variable的volatile属性默认为False,如果某一个variable的volatile属性被设为True,那么所有依赖它的节点volatile属性都为True。volatile属性为True的节点不会求导,volatile的优先级比requires_grad高。

多次反向传播时,梯度是累加的。反向传播的中间缓存会被清空,为进行多次反向传播需指定retain_graph=True来保存这些缓存

非叶子节点的梯度计算完之后即被清空,可以使用autograd.grad或hook技术获取非叶子节点的值

variable的grad与data形状一致,应避免直接修改variable.data,因为对data的直接操作无法利用autograd进行反向传播

反向传播函数backward的参数grad_variables可以看成链式求导的中间结果,如果是标量,可以省略,默认为1

PyTorch采用动态图设计,可以很方便地查看中间层的输出,动态的设计计算图结构

在 e.backward() 执行求导时,系统遍历 e.grad_fn.next_functions ,分别执行求导。

如果 e.grad_fn.next_functions 中有哪个是 AccumulateGrad ,则把结果保存到 AccumulateGrad 的variable引用的变量中。

否则,递归遍历这个function的 next_functions ,执行求导过程。

最终到达所有的叶节点,求导结束。同时,所有的叶节点的 grad 变量都得到了相应的更新。

他们之间的关系如下图所示:

例子:

x = torch.randn(5, 5)
y = torch.randn(5, 5)
z = torch.randn((5, 5), requires_grad=True)
a = x + z
print(a.requires_grad)

可以z是一个标量,当调用它的backward方法后会根据链式法则自动计算出叶子节点的梯度值。

但是如果遇到z是一个向量或者是一个矩阵的情况,这个时候又该怎么计算梯度呢?这种情况我们需要定义grad_tensor来计算矩阵的梯度。在介绍为什么使用之前我们先看一下源代码中backward的接口是如何定义的:

torch.autograd.backward(
		tensors,
		grad_tensors=None,
		retain_graph=None,
		create_graph=False,
		grad_variables=None)

grad_tensors作用

x = torch.ones(2,requires_grad=True)
z = x + 2
z.backward()
>>> ...
RuntimeError: grad can be implicitly created only for scalar outputs

当我们运行上面的代码的话会报错,报错信息为RuntimeError: grad can be implicitly created only for scalar outputs。

x = torch.ones(2,requires_grad=True)
z = x + 2
z.sum().backward()
print(x.grad)
>>> tensor([1., 1.])

我们再仔细想想,对z求和不就是等价于z点乘一个一样维度的全为1的矩阵吗?即sum(Z)=dot(Z,I),而这个I也就是我们需要传入的grad_tensors参数。(点乘只是相对于一维向量而言的,对于矩阵或更高为的张量,可以看做是对每一个维度做点乘)

代码如下:

x = torch.ones(2,requires_grad=True)
z = x + 2
z.backward(torch.ones_like(z)) # grad_tensors需要与输入tensor大小一致
print(x.grad)
>>> tensor([1., 1.])
x = torch.tensor([2., 1.], requires_grad=True).view(1, 2)
y = torch.tensor([[1., 2.], [3., 4.]], requires_grad=True)
z = torch.mm(x, y)
print(f"z:{z}")
z.backward(torch.Tensor([[1., 0]]), retain_graph=True)
print(f"x.grad: {x.grad}")
print(f"y.grad: {y.grad}")
>>> z:tensor([[5., 8.]], grad_fn=<MmBackward>)
x.grad: tensor([[1., 3.]])
y.grad: tensor([[2., 0.],
        [1., 0.]])

补充:PyTorch的计算图和自动求导机制

自动求导机制简介

PyTorch会根据计算过程自动生成动态图,然后根据动态图的创建过程进行反向传播,计算每个节点的梯度值。

为了能够记录张量的梯度,首先需要在创建张量的时候设置一个参数requires_grad=True,意味着这个张量将会加入到计算图中,作为计算图的叶子节点参与计算,最后输出根节点。

对于PyTorch来说,每个张量都有一个grad_fn方法,包含创建该张量的运算的导数信息。在反向传播的过程中,通过传入后一层的神经网络的梯度,该函数会计算出参与运算的所有张量的梯度。

同时,PyTorch提供了一个专门用来做自动求导的包torch.autograd。它包含两个重要的函数,即torch.autograd.bakward和torch.autograd.grad。

torch.autograd.bakward通过传入根节点的张量以及初始梯度张量,可以计算产生该根节点的所有对应叶子节点的梯度。当张量为标量张量时,可以不传入梯度张量,这是默认会设置初始梯度张量为1.当计算梯度张量时,原先建立起来的计算图会被自动释放,如果需要再次做自动求导,因为计算图已经不存在,就会报错。如果要在反向传播的时候保留计算图,可以设置retain_graph=True。

另外,在自动求导的时候默认不会建立反向传播的计算图,如果需要在反向传播的计算的同时建立梯度张量的计算图,可以设置create_graph=True。对于一个可求导的张量来说,也可以调用该张量内部的backward方法。

自动求导机制实例

定义一个函数f(x)=x2,则它的导数f'(x)=2x。于是可以创建一个可导的张量来测试具体的导数。

t1 = torch.randn(3, 3, requires_grad=True) # 定义一个3×3的张量
print(t1)
t2 = t1.pow(2).sum() # 计算张量的所有分量的平方和
t2.backward() # 反向传播
print(t1.grad) # 梯度是原始分量的2倍
t2 = t1.pow(2).sum() # 再次计算张量的所有分量的平方和
t2.backward() # 再次反向传播
print(t1.grad) # 梯度累积
print(t1.grad.zero_()) # 单个张量清零梯度的方法

得到的结果:

tensor([[-1.8170, -1.4907,  0.4560],
        [ 0.9244,  0.0798, -1.2246],
        [ 1.7800,  0.0367, -2.5998]], requires_grad=True)
tensor([[-3.6340, -2.9814,  0.9120],
        [ 1.8488,  0.1597, -2.4492],
        [ 3.5600,  0.0735, -5.1996]])
tensor([[ -7.2681,  -5.9628,   1.8239],
        [  3.6975,   0.3193,  -4.8983],
        [  7.1201,   0.1469, -10.3992]])
tensor([[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]])

需要注意的一点是: 张量绑定的梯度张量在不清空的情况下会逐渐累积。这在例如一次性求很多Mini-batch的累积梯度时是有用的,但在一般情况下,需要注意将张量的梯度清零。

梯度函数的使用

如果不需要求出当前张量对所有产生该张量的叶子节点的梯度,可以使用torch.autograd.grad函数。

这个函数的参数是两个张量,第一个张量是计算图的张量列表,第二个参数是需要对计算图求导的张量。最后输出的结果是第一个张量对第二个张量求导的结果。

这个函数不会改变叶子节点的grad属性,同样该函数在反向传播求导的时候释放计算图,如果要保留计算图需要设置retain_graph=True。

另外有时候会碰到一种情况:求到的两个张量之间在计算图上没有关联。在这种情况下需要设置allow_unused=True,结果会返回分量全为0的梯度张量。

t1 = torch.randn(3, 3, requires_grad=True)
print(t1)
t2 = t1.pow(2).sum()
print(torch.autograd.grad(t2, t1))

得到的结果为:

tensor([[ 0.5952,  0.1209,  0.5190],
        [ 0.4602, -0.6943, -0.7853],
        [-0.1460, -0.1406, -0.7081]], requires_grad=True)
(tensor([[ 1.1904,  0.2418,  1.0379],
        [ 0.9204, -1.3885, -1.5706],
        [-0.2919, -0.2812, -1.4161]])

计算图构建的启用和禁用

由于计算图的构建需要消耗内存和计算资源,在一些情况下计算图并不是必要的,所以可以使用torch.no_grad这个上下文管理器,对该管理器作用域中的神经网络计算不构建任何的计算图。

还有一种情况是对于一个张量,在反向传播的时候可能不需要让梯度通过这个张量的节点,也就是新建的计算图需要和原来的计算图分离,使用张量的detach方法,可以返回一个新的张量,该张量会成为一个新的计算图的叶子结点。

总结

PyTorch使用动态计算图,该计算图的特点是灵活。虽然在构件计算图的时候有性能开销,但PyTorch本身的优化抵消了一部分开销,尽可能让计算图的构建和释放过程代价最小,因此,相对于静态图的框架来说,PyTorch本身的运算速度并不慢。

有了计算图之后,就可以很方便地通过自动微分机制进行反向传播的计算,从而获得计算图叶子节点的梯度。在训练深度学习模型的时候,可以通过对损失函数的反向传播,计算所有参数的梯度,随后在优化器中优化这些梯度。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 解决torch.autograd.backward中的参数问题

    torch.autograd.backward(variables, grad_variables=None, retain_graph=None, create_graph=False) 给定图的叶子节点variables, 计算图中变量的梯度和. 计算图可以通过链式法则求导.如果variables中的任何一个variable是 非标量(non-scalar)的,且requires_grad=True.那么此函数需要指定grad_variables,它的长度应该和variables的长度匹配,

  • 浅谈对pytroch中torch.autograd.backward的思考

    反向传递法则是深度学习中最为重要的一部分,torch中的backward可以对计算图中的梯度进行计算和累积 这里通过一段程序来演示基本的backward操作以及需要注意的地方 >>> import torch >>> from torch.autograd import Variable >>> x = Variable(torch.ones(2,2), requires_grad=True) >>> y = x + 2 >&g

  • PyTorch中的Variable变量详解

    一.了解Variable 顾名思义,Variable就是 变量 的意思.实质上也就是可以变化的量,区别于int变量,它是一种可以变化的变量,这正好就符合了反向传播,参数更新的属性. 具体来说,在pytorch中的Variable就是一个存放会变化值的地理位置,里面的值会不停发生片花,就像一个装鸡蛋的篮子,鸡蛋数会不断发生变化.那谁是里面的鸡蛋呢,自然就是pytorch中的tensor了.(也就是说,pytorch都是有tensor计算的,而tensor里面的参数都是Variable的形式).如果

  • 在 pytorch 中实现计算图和自动求导

    前言: 今天聊一聊 pytorch 的计算图和自动求导,我们先从一个简单例子来看,下面是一个简单函数建立了 yy 和 xx 之间的关系 然后我们结点和边形式表示上面公式: 上面的式子可以用图的形式表达,接下来我们用 torch 来计算 x 导数,首先我们创建一个 tensor 并且将其requires_grad设置为True表示随后反向传播会对其进行求导. x = torch.tensor(3.,requires_grad=True) 然后写出 y = 3*x**2 + 4*x + 2 y.ba

  • pytorch中的自定义反向传播,求导实例

    pytorch中自定义backward()函数.在图像处理过程中,我们有时候会使用自己定义的算法处理图像,这些算法多是基于numpy或者scipy等包. 那么如何将自定义算法的梯度加入到pytorch的计算图中,能使用Loss.backward()操作自动求导并优化呢.下面的代码展示了这个功能` import torch import numpy as np from PIL import Image from torch.autograd import gradcheck class Bicu

  • pytorch简介

    一.Pytorch是什么?   Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程.Torch 是一个经典的对多维矩阵数据进行操作的张量(tensor )库,在机器学习和其他数学密集型应用有广泛应用.与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图.但由于Torch语言采用 Lua,导致在国内一直很小众,并逐渐被支持 Python 的 Tensorflow

  • Pytorch反向传播中的细节-计算梯度时的默认累加操作

    Pytorch反向传播计算梯度默认累加 今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个累加机制到底会有啥影响, 所以我趁着自己练习的一个例子正好直观的看一下以及如何解决: pytorch实现线性回归 先附上试验代码来感受一下: torch.manual_seed(6) lr = 0.01 # 学习率 result = [] # 创建训练数据 x = torch.rand(20, 1

  • Python Pytorch深度学习之核心小结

    目录 一.Numpy实现网络 二.Pytorch:Tensor 三.自动求导 1.PyTorch:Tensor和auto_grad 总结 Pytorch的核心是两个主要特征: 1.一个n维tensor,类似于numpy,但是tensor可以在GPU上运行 2.搭建和训练神经网络时的自动微分/求导机制 一.Numpy实现网络 在总结Tensor之前,先使用numpy实现网络.numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数. import numpy as np # n是批量大小,

  • pytorch-autograde-计算图的特点说明

    在PyTorch实现中,autograd会随着用户的操作,记录生成当前variable的所有操作,并由此建立一个有向无环图.用户每进行一个操作,相应的计算图就会发生改变. 更底层的实现中,图中记录了操作Function,每一个变量在图中的位置可通过其grad_fn属性在图中的位置推测得到.在反向传播过程中,autograd沿着这个图从当前变量(根节点\textbf{z}z)溯源,可以利用链式求导法则计算所有叶子节点的梯度. 每一个前向传播操作的函数都有与之对应的反向传播函数用来计算输入的各个va

  • Python的这些库,你知道多少?

    一.导读 通常,开发大量原始代码是一个费时费力的工作而且有时候有很多专业知识我们不可能都一 一弄懂,为了避免这种情况,我们会尽可能多地使用库中已有的类来创建对象,通常仅需要一行代码.因此,库能够帮助我们使用适量的代码执行重要的任务.我想这也是为什么python能够活跃在我们身边的原因之一吧,欢迎大家点赞收藏,日后学习. 二.前戏 刚才忘了说了,大家在用python的时候我还是推荐大家下一个集成开发环境Anaconda这里面能够更好的管理这些第三方库文件,其好处只有你真正用过才知道老规矩想用的话自

  • PyTorch上搭建简单神经网络实现回归和分类的示例

    本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下: 一.PyTorch入门 1. 安装方法 登录PyTorch官网,http://pytorch.org,可以看到以下界面: 按上图的选项选择后即可得到Linux下conda指令: conda install pytorch torchvision -c soumith 目前PyTorch仅支持MacOS和Linux,暂不支持Windows.安装 PyTorch 会安装两个模块,一个是torch,一个 torch

  • PyTorch基本数据类型(一)

    PyTorch基础入门一:PyTorch基本数据类型 1)Tensor(张量) Pytorch里面处理的最基本的操作对象就是Tensor(张量),它表示的其实就是一个多维矩阵,并有矩阵相关的运算操作.在使用上和numpy是对应的,它和numpy唯一的不同就是,pytorch可以在GPU上运行,而numpy不可以.所以,我们也可以使用Tensor来代替numpy的使用.当然,二者也可以相互转换. Tensor的基本数据类型有五种: 32位浮点型:torch.FloatTensor.pyorch.T

随机推荐