Python列表删除重复元素与图像相似度判断及删除实例代码

发现问题

项目需要,需要删除文件夹中的冗余图片。涉及图像文件名的操作,图像文件名存储在list中

python list删除元素有remove()和pop(),remove()对元素进行操作,pop()对索引进行操作,并会返回pop掉的值。一个只会从列表移除一个数

一.如果已经有了一个列表l,令h=l,对l操作时同时会影响h,貌似原因是内存共享的,正确的方法是h=l.copy()

二.测试时,发现一个问题,如下面代码和结果:

item=2时,并没有把2全部删掉,后面重复的3也没有删去。

**查阅一些资料后发现:list的遍历是基于下标的不是基于元素,你删掉一个元素后,列表就发生了变化,所有的元素都往前移动了一个位置,假设要删除重的2,一个列表中索引为4,对应的值为2,索引为5,对应的值为2,索引为6,对应的值为3,当前循环删掉索引4时对应的值2之后,索引4的值为2,索引5,值为3,下一次循环,本来要再删一个2,但此时索引为5对应的为3,就漏掉了一个2。

解决方案:

(1)倒序循环遍历:

(2)实际用的方法,判断到重复元素后,将那个item复制为0或‘0',相当于用一个标识符占住重复元素的位置,循环时先判断是否为‘0',最后通过

list = list(set(list))

list.remove('0')

即可

附图像去冗余算法,判断图像相似通过,感知哈希算法和三通道直方图,及图像尺寸

from img_similarity import runtwoImageSimilaryFun
import os
from PIL import Image
import shutil
import time
import numpy as np

def similar(path1, path2):
    img1 = Image.open(path1)
    img2 = Image.open(path2)
    w1 = img1.size[0] # 图片的宽
    h1 = img2.size[1]  # 图片的高
    w2 = img2.size[0] # 图片的宽
    h2 = img2.size[1]  # 图片的高
    w_err = abs(w1 - w2)/w1
    h_err = abs(h1 - h2)/h1
    if w_err > 0.1 or h_err >0.1:
        return 0
    else:
        phash, color_hist = runtwoImageSimilaryFun(path1, path2)
        if phash <=8 or color_hist >=0.9:
            return 1
        else:
            return 0

path = './crop_img'
result_imgdirs_path = './removed_repeat_img'
folderlist = os.listdir(path)
folderlist.sort()
for item in folderlist:
    folder_path = path + '/' + item
    new_folder_path = result_imgdirs_path + '/' + item
    os.makedirs(new_folder_path)

    imglist = os.listdir(folder_path)
    imglist.sort()

    time_start = time.time()

    for i,item1 in enumerate(imglist):
        if item1 == '0':
            continue
        path1 = folder_path + '/' + item1
        for j, item2 in enumerate(imglist[i + 1:]):
            if item2 == '0':
                continue
            path2 = folder_path + '/' + item2
            t = similar(path1, path2)
            if t:
                #将判断为相似的图片在trans_list中的名字置‘0',代表不需要复制
                imglist[i+j+1] = '0'

    imglist = list(set(imglist))
    imglist.remove('0')

    time_end = time.time()
    time_c = time_end - time_start
    print('{} similarity judgement list time cost {}s'.format(item, time_c))

    time_start = time.time()
    #移动图片
    for item3 in imglist:
        ori_img_path = folder_path + '/' + item3
        new_img_path = new_folder_path + '/' + item3
        shutil.copy(ori_img_path, new_img_path)

    time_end = time.time()
    time_c = time_end - time_start # 运行所花时间
    print('{} move image time cost {}s'.format(item, time_c))

img_similarity.py

import cv2
import numpy as np
from PIL import Image
import requests
from io import BytesIO
import matplotlib

matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

def aHash(img):
    # 均值哈希算法
    # 缩放为8*8
    img = cv2.resize(img, (8, 8))
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # s为像素和初值为0,hash_str为hash值初值为''
    s = 0
    hash_str = ''
    # 遍历累加求像素和
    for i in range(8):
        for j in range(8):
            s = s + gray[i, j]
    # 求平均灰度
    avg = s / 64
    # 灰度大于平均值为1相反为0生成图片的hash值
    for i in range(8):
        for j in range(8):
            if gray[i, j] > avg:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str

def dHash(img):
    # 差值哈希算法
    # 缩放8*8
    img = cv2.resize(img, (9, 8))
    # 转换灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    hash_str = ''
    # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
    for i in range(8):
        for j in range(8):
            if gray[i, j] > gray[i, j + 1]:
                hash_str = hash_str + '1'
            else:
                hash_str = hash_str + '0'
    return hash_str

def pHash(img):
    # 感知哈希算法
    # 缩放32*32
    img = cv2.resize(img, (32, 32))  # , interpolation=cv2.INTER_CUBIC
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 将灰度图转为浮点型,再进行dct变换
    dct = cv2.dct(np.float32(gray))
    # opencv实现的掩码操作
    dct_roi = dct[0:8, 0:8]

    hash = []
    avreage = np.mean(dct_roi)
    for i in range(dct_roi.shape[0]):
        for j in range(dct_roi.shape[1]):
            if dct_roi[i, j] > avreage:
                hash.append(1)
            else:
                hash.append(0)
    return hash

def calculate(image1, image2):
    # 灰度直方图算法
    # 计算单通道的直方图的相似值
    hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
    hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
    # 计算直方图的重合度
    degree = 0
    for i in range(len(hist1)):
        if hist1[i] != hist2[i]:
            degree = degree + \
                     (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
        else:
            degree = degree + 1
    degree = degree / len(hist1)
    return degree

def classify_hist_with_split(image1, image2, size=(256, 256)):
    # RGB每个通道的直方图相似度
    # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
    image1 = cv2.resize(image1, size)
    image2 = cv2.resize(image2, size)
    sub_image1 = cv2.split(image1)
    sub_image2 = cv2.split(image2)
    sub_data = 0
    for im1, im2 in zip(sub_image1, sub_image2):
        sub_data += calculate(im1, im2)
    sub_data = sub_data / 3
    return sub_data

def cmpHash(hash1, hash2):
    # Hash值对比
    # 算法中1和0顺序组合起来的即是图片的指纹hash。顺序不固定,但是比较的时候必须是相同的顺序。
    # 对比两幅图的指纹,计算汉明距离,即两个64位的hash值有多少是不一样的,不同的位数越小,图片越相似
    # 汉明距离:一组二进制数据变成另一组数据所需要的步骤,可以衡量两图的差异,汉明距离越小,则相似度越高。汉明距离为0,即两张图片完全一样
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1) != len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 不相等则n计数+1,n最终为相似度
        if hash1[i] != hash2[i]:
            n = n + 1
    return n

def getImageByUrl(url):
    # 根据图片url 获取图片对象
    html = requests.get(url, verify=False)
    image = Image.open(BytesIO(html.content))
    return image

def PILImageToCV():
    # PIL Image转换成OpenCV格式
    path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
    img = Image.open(path)
    plt.subplot(121)
    plt.imshow(img)
    print(isinstance(img, np.ndarray))
    img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
    print(isinstance(img, np.ndarray))
    plt.subplot(122)
    plt.imshow(img)
    plt.show()

def CVImageToPIL():
    # OpenCV图片转换为PIL image
    path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
    img = cv2.imread(path)
    # cv2.imshow("OpenCV",img)
    plt.subplot(121)
    plt.imshow(img)

    img2 = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    plt.subplot(122)
    plt.imshow(img2)
    plt.show()

def bytes_to_cvimage(filebytes):
    # 图片字节流转换为cv image
    image = Image.open(filebytes)
    img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
    return img

def runAllImageSimilaryFun(para1, para2):
    # 均值、差值、感知哈希算法三种算法值越小,则越相似,相同图片值为0
    # 三直方图算法和单通道的直方图 0-1之间,值越大,越相似。 相同图片为1
    # t1,t2   14;19;10;  0.70;0.75
    # t1,t3   39 33 18   0.58 0.49
    # s1,s2  7 23 11     0.83 0.86  挺相似的图片
    # c1,c2  11 29 17    0.30 0.31

    if para1.startswith("http"):
        # 根据链接下载图片,并转换为opencv格式
        img1 = getImageByUrl(para1)
        img1 = cv2.cvtColor(np.asarray(img1), cv2.COLOR_RGB2BGR)

        img2 = getImageByUrl(para2)
        img2 = cv2.cvtColor(np.asarray(img2), cv2.COLOR_RGB2BGR)
    else:
        # 通过imread方法直接读取物理路径
        img1 = cv2.imread(para1)
        img2 = cv2.imread(para2)

    hash1 = aHash(img1)
    hash2 = aHash(img2)
    n1 = cmpHash(hash1, hash2)
    print('均值哈希算法相似度aHash:', n1)

    hash1 = dHash(img1)
    hash2 = dHash(img2)
    n2 = cmpHash(hash1, hash2)
    print('差值哈希算法相似度dHash:', n2)

    hash1 = pHash(img1)
    hash2 = pHash(img2)
    n3 = cmpHash(hash1, hash2)
    print('感知哈希算法相似度pHash:', n3)

    n4 = classify_hist_with_split(img1, img2)
    print('三直方图算法相似度:', n4)

    n5 = calculate(img1, img2)
    print("单通道的直方图", n5)
    print("%d %d %d %.2f %.2f " % (n1, n2, n3, round(n4[0], 2), n5[0]))
    print("%.2f %.2f %.2f %.2f %.2f " % (1 - float(n1 / 64), 1 -
                                         float(n2 / 64), 1 - float(n3 / 64), round(n4[0], 2), n5[0]))

    plt.subplot(121)
    plt.imshow(Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)))
    plt.subplot(122)
    plt.imshow(Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)))
    plt.show()

def runtwoImageSimilaryFun(para1, para2):
    # 均值、差值、感知哈希算法三种算法值越小,则越相似,相同图片值为0
    # 三直方图算法和单通道的直方图 0-1之间,值越大,越相似。 相同图片为1
    # t1,t2   14;19;10;  0.70;0.75
    # t1,t3   39 33 18   0.58 0.49
    # s1,s2  7 23 11     0.83 0.86  挺相似的图片
    # c1,c2  11 29 17    0.30 0.31

    if para1.startswith("http"):
        # 根据链接下载图片,并转换为opencv格式
        img1 = getImageByUrl(para1)
        img1 = cv2.cvtColor(np.asarray(img1), cv2.COLOR_RGB2BGR)

        img2 = getImageByUrl(para2)
        img2 = cv2.cvtColor(np.asarray(img2), cv2.COLOR_RGB2BGR)
    else:
        # 通过imread方法直接读取物理路径
        img1 = cv2.imread(para1)
        img2 = cv2.imread(para2)

    hash1 = pHash(img1)
    hash2 = pHash(img2)
    n3 = cmpHash(hash1, hash2)

    n4 = classify_hist_with_split(img1, img2)

    return n3, n4

if __name__ == "__main__":
    p1 = '/Users/Desktop/11/24.jpeg'
    p2 = '/Users/Desktop/11/25.jpeg'
    runAllImageSimilaryFun(p1, p2)

总结

到此这篇关于Python列表删除重复元素与图像相似度判断及删除的文章就介绍到这了,更多相关Python列表删除重复元素内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python实现识别相似图片小结

    文章简介 在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 如有错误,请多包涵和多多指教. 参考的文章和图片来源会在底部一一列出. 以及本篇文章所用的代码都会在底下给出github地址. 安装相关库 python用作图像处理的相关库主要有openCV(C++编写,提供了python语言的接口),PIL,

  • Python比较两个图片相似度的方法

    本文实例讲述了Python比较两个图片相似度的方法.分享给大家供大家参考.具体分析如下: 这段代码实用pil模块比较两个图片的相似度,根据实际实用,代码虽短但效果不错,还是非常靠谱的,前提是图片要大一些,太小的图片不好比较.附件提供完整测试代码和对比用的图片. 复制代码 代码如下: #!/usr/bin/python # Filename: histsimilar.py # -*- coding: utf-8 -*- import Image def make_regalur_image(img

  • Python list列表中删除多个重复元素操作示例

    本文实例讲述了Python list列表中删除多个重复元素操作.分享给大家供大家参考,具体如下: 我们以下面这个list为例,删除其中所有值为6的元素: l=[9,6,5,6,6,7,8,9,6,0] 首先尝试remove方法: l.remove(6) print(l) 结果为:[9, 5, 6, 6, 7, 8, 9, 6, 0],只删除了第一个为6的元素. 如果采用for循环遍历各元素: for x in l: if x == 6: l.remove(x) 结果为[9, 5, 7, 8, 9

  • python 去除二维数组/二维列表中的重复行方法

    之前提到去除一维数组中的重复元素用unique()函数,如果要去除二维数组中的重复行该怎么操作呢? import numpy as np arr = np.array([[1, 2],[3, 4],[5, 6],[7, 8],[3, 4],[1, 2]]) print(np.array(list(set([tuple(t) for t in arr])))) 输出: [[1 2] [3 4] [5 6] [7 8]] 如果是二维列表,列表中每个元素还是列表 list2=list(set([tup

  • Python3查找列表中重复元素的个数的3种方法详解

    方法一: mylist = [1,2,2,2,2,3,3,3,4,4,4,4] myset = set(mylist) for item in myset: print("the %d has found %d" %(item,mylist.count(item))) the 1 has found 1 the 2 has found 4 the 3 has found 3 the 4 has found 4 方法二: from collections import Counter C

  • Python实现判断给定列表是否有重复元素的方法

    本文实例讲述了Python实现判断给定列表是否有重复元素的方法.分享给大家供大家参考,具体如下: 题目很简单,只是简单温习一个方法,most_common,这是collection模块中Counter类的方法,具体方法用法可以去查 下面是简单的实现: #!usr/bin/env python #encoding:utf-8 ''''' __Author__:沂水寒城 功能:给定一个列表判断里面是否有重复元素 ''' from collections import Counter def func

  • Python实现去除列表中重复元素的方法小结【4种方法】

    本文实例讲述了Python实现去除列表中重复元素的方法.分享给大家供大家参考,具体如下: 这里一共使用了四种方法来去除列表中的重复元素,下面是具体实现: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:去除列表中的重复元素 ''' def func1(one_list): ''''' 使用集合,个人最常用 ''' return list(set(one_list)) def func2(one_list): ''''' 使用

  • Python实现列表删除重复元素的三种常用方法分析

    本文实例讲述了Python实现列表删除重复元素的三种常用方法.分享给大家供大家参考,具体如下: 给定一个列表,要求删除列表中重复元素. listA = ['python','语','言','是','一','门','动','态','语','言'] 方法1,对列表调用排序,从末尾依次比较相邻两个元素,遇重复元素则删除,否则指针左移一位重复上述过程: def deleteDuplicatedElementFromList(list): list.sort(); print("sorted list:%

  • Python去除列表中重复元素的方法

    本文实例讲述了Python去除列表中重复元素的方法.分享给大家供大家参考.具体如下: 比较容易记忆的是用内置的set l1 = ['b','c','d','b','c','a','a'] l2 = list(set(l1)) print l2 还有一种据说速度更快的,没测试过两者的速度差别 l1 = ['b','c','d','b','c','a','a'] l2 = {}.fromkeys(l1).keys() print l2 这两种都有个缺点,祛除重复元素后排序变了: ['a', 'c',

  • Python统计列表中的重复项出现的次数的方法

    本文实例展示了Python统计列表中的重复项出现的次数的方法,是一个很实用的功能,适合Python初学者学习借鉴.具体方法如下: 对一个列表,比如[1,2,2,2,2,3,3,3,4,4,4,4],现在我们需要统计这个列表里的重复项,并且重复了几次也要统计出来. 方法1: mylist = [1,2,2,2,2,3,3,3,4,4,4,4] myset = set(mylist) #myset是另外一个列表,里面的内容是mylist里面的无重复 项 for item in myset: prin

随机推荐