Go语言接口的用法详解

一、接口的定义和好处

我们都知道接口给类提供了一种多态的机制,什么是多态,多态就是系统根据类型的具体实现完成不同的行为。

以下代码简单说明了接口的作用

package main

import (
    "fmt"
    "io"
    "net/http"
    "os"
)

// init 在main 函数之前调用
func init() {
    if len(os.Args) != 2 {
        fmt.Println("Usage: ./example2 <url>")
        os.Exit(-1)
    }
}

// main 是应用程序的入口
func main() {
    // 从Web 服务器得到响应
    r, err := http.Get(os.Args[1])
    if err != nil {
        fmt.Println(err)
        return
    }

    // 从Body 复制到Stdout
    io.Copy(os.Stdout, r.Body)
    if err := r.Body.Close(); err != nil {
        fmt.Println(err)
    }
}

①注意下 http.Get(os.Args[1]) 这里他的返回值r是一个Response对象的指针,也就是请求的结果

做过web开发的都知道,下面是源代码

func Get(url string) (resp *Response, err error) {
    return DefaultClient.Get(url)
}

以下是Response的结构,这里有一个Body,是一个io.ReadCloser类型的,这是啥?往下看

type Response struct {
    Status string // e.g. "200 OK"
    StatusCode int // e.g. 200
    Proto string // e.g. "HTTP/1.0"
    ProtoMajor int // e.g. 1
    ProtoMinor int // e.g. 0
    Header Header
    Body io.ReadCloser
    ContentLength int64
    TransferEncoding []string
    Close bool
    Uncompressed bool
    Trailer Header
    Request *Request
    TLS *tls.ConnectionState
}

ReadCloser是一个接口哦!Reader和Closer也同样是接口,接口里面都是方法。

type ReadCloser interface {
    Reader
    Closer
}

Reader接口

type Reader interface {
    Read(p []byte) (n int, err error)
}

Closer接口

type Closer interface {
    Close() error
}

②io.Copy(os.Stdout, r.Body) 这个方法,查看源码如下

func Copy(dst Writer, src Reader) (written int64, err error) {
    return copyBuffer(dst, src, nil)
}

这里的输入参数dst是一个实现了Writer接口的对象,而src则是一个实现了Reader接口的对象,由此,我们可以知道为什么io.Copy(os.Stdout, r.Body)的第二个参数可以传r.Body了,因为①中展示了Body这个对象是实现了Reader接口的。同理os.Stdout对象这个接口值表示标准输出设备,并且已经实现了io.Writer 接口

os.Stdout返回的是一个*File, File里面只有一个*file,而*file是实现了下面两个接口的,下面是Go的源码

func (f *File) Read(b []byte) (n int, err error) {
    if err := f.checkValid("read"); err != nil {
        return 0, err
    }
    n, e := f.read(b)
    return n, f.wrapErr("read", e)
}

func (f *File) Write(b []byte) (n int, err error) {
    if err := f.checkValid("write"); err != nil {
        return 0, err
    }
    n, e := f.write(b)
    if n < 0 {
        n = 0
    }
    if n != len(b) {
        err = io.ErrShortWrite
    }

    epipecheck(f, e)

    if e != nil {
        err = f.wrapErr("write", e)
    }

    return n, err
}

所以说*File本身是继承了Writer和Reader接口的类型。

综上有了参数或者返回值是接口类型,就不用关注于具体的返回类型是什么,只要实现了的接口的方法都是可以被接受的。

二、接口值和实际对象值是怎么转化和存储的

我们都知道 如果一个类型实现了某个接口,那么这个类型的实际值是可以赋值给一个接口的变量的。

在C#中是这样的,例如将一个List赋值给一个IEnumerable类型的变量

IEnumerable<int> list = new List<int>(); 

在Go语言中也是这样的,请看下面的代码

package main

import (
    "fmt"
)

type eat interface{
    eat()(string)
}

type Bird struct
{
    Name string
}

func (bird Bird) eat()string{
    return "Bird:"+bird.Name+" eat"
}

func print(e eat){
    fmt.Println(e.eat())
}

// main 是应用程序的入口
func main() {

    bird1:= Bird{Name:"Big"}
    bird2:= new(Bird)
    bird2.Name = "Small"

    print(bird1)
    print(bird2)

    var eat1 eat
    eat1 = bird1
    print(eat1)
}

结果

Bird:Big eat

Bird:Small eat

Bird:Big eat

这里定义了一个eat接口,有一个Bird的类型实现了该接口,print函数接受一个eat接口类型的参数,

这里可以看到前两次直接把bird1和bird2作为参数传入到print函数内,第二次则是声明了一个eat接口类型的变量eat1,然后将bird1进行了赋值。换句话说接口类型变量实际承载了实际类型值。这里是如何承载的呢?

这里我们把 eat1 称作 接口值,将bird1称作实体类型值,eat1和bird1的关系如下:

接口值可以看成两部分组合(都是指针)而成的。第一部分是【iTable的地址】第二部分是【实体类型值的地址】

关于interface的解析:

https://www.jb51.net/article/255284.htm

三、方法集的概念

简单的讲:方法集定义了接口的接受规则

举例说明:

package main

import (
    "fmt"
)

type notifier interface {
    notify()
}

type user struct {
    name string
    email string
}

func (u user) notify() {
    fmt.Printf("Sending user email to %s<%s>\n",
        u.name,
        u.email)
}

func sendNotification(n notifier) {
    n.notify()
}

func main() {
    u := user{"Bill", "bill@email.com"}
    sendNotification(u)

}

如上代码,定义了一个notifier接口,有一个方法nitify()方法,定义了一个user类型的结构,实现了notify方法,接收者类型是user,即实现了notifier接口,又定义了一个sendNotification方法,接收一个实现notifier接口的类型,并调用notify方法。

func (u *user) notify() {
    fmt.Printf("Sending user email to %s<%s>\n",
        u.name,
        u.email)
}

func main() {
    u := user{"Bill", "bill@email.com"}
    sendNotification(u)
}

现在修正一下代码,将接收者改为user的指针类型。此时会发现原来调用的地方会出现错误。

cannot use u (type user) as type notifier in argument to sendNotification:user does not implement notifier (notify method has pointer receiver)

不能将u(类型是user)作为sendNotification 的参数类型notifier:user 类型并没有实现notifier(notify 方法使用指针接收者声明)

为什么会出现上面的问题?要了解用指针接收者来实现接口时为什么user 类型的值无法实现该接口,需要先了解方法集。方法集定义了一组关联到给定类型的值或者指针的方法。

定义方法时使用的接收者的类型决定了这个方法是关联到值,还是关联到指针,还是两个都关联。

以下是Go语言规范中的方法集:

上表的意思是:类型的值只能实现值接收者的接口;指向类型的指针,既可以实现值接收者的接口,也可以实现指针接收者的接口。

从接收者的角度来看一下这些规则

如果是值接收者,实体类型的值和指针都可以实现对应的接口;如果是指针接收者,那么只有类型的指针能够实现对应的接口。

所以针对上面的问题,将传入的u变成传入地址就可以了(可以套用一下表格,接收者*user对应的values是*user,所以传地址对应上面表格浅蓝色部分)

func (u *user) notify() {

    fmt.Printf("Sending user email to %s<%s>\n",

        u.name,

        u.email)

}

func main() {

    u := user{"Bill", "bill@email.com"}

    sendNotification(&u)

}

综上我们总结一下,也就是说如果你的方法的接受者的类型是指针类型,那么方法的实现者就只能是指向该类型的指针类型,如果方法的接收者是值类型,那么方法的实现者可以是值类型也可以是指向该类型的指针类型。

面试题一个,下面的代码能否编译通过?

package main
import (
    "fmt"
)
type People interface {
    Speak(string) string
}
type Stduent struct{}
func (stu *Stduent) Speak(think string) (talk string) {
    if think == "bitch" {
        talk = "You are a good boy"
    } else {
        talk = "hi"
    }
    return
}
func main() {
    var peo People = Stduent{}
    think := "bitch"
    fmt.Println(peo.Speak(think))
}

答案:不能。

分析:首先Speak的方法的接收者是*Student , 根据上面的规则,那么实现该方法的实现者只能是 *Student,但是 var peo People = Student{} 这里却将Student作为实现者赋值给了接口,这里就会出现问题。Integer(25)是一个字面量,而字面量是一个常量,所以没有办法寻址。

四、多态

// Sample program to show how polymorphic behavior with interfaces.
package main

import (
    "fmt"
)

type notifier interface {
    notify()
}

// user defines a user in the program.
type user struct {
    name string
    email string
}

func (u *user) notify() {
    fmt.Printf("Sending user email to %s<%s>\n",
        u.name,
        u.email)
}

type admin struct {
    name string
    email string
}

func (a *admin) notify() {
    fmt.Printf("Sending admin email to %s<%s>\n",
        a.name,
        a.email)
}

// main is the entry point for the application.
func main() {
    // Create a user value and pass it to sendNotification.
    bill := user{"Bill", "bill@email.com"}
    sendNotification(&bill)

    // Create an admin value and pass it to sendNotification.
    lisa := admin{"Lisa", "lisa@email.com"}
    sendNotification(&lisa)
}

func sendNotification(n notifier) {
    n.notify()
}

上面的代码很好的说明的接口的多态,user和admin都实现了notify方法,既实现了的notifier接口,sendNotification函数接收一个实现notifier接口的实例,从而user和admin都可以当作参数使用sendNotification函数,而sendNotification里面的notify方法执行根据的是具体传入的实例中实现的方法。

到此这篇关于Go语言接口的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Golang接口型函数使用小结

    目录 常规接口实现 接口型函数出场 进一步改造 什么是接口型函数?顾名思义接口函数指的是用函数实现接口,这样在调用的时候就会非常简便,这种方式适用于只有一个函数的接口. 这里以迭代一个map为例,演示这一实现的技巧. 常规接口实现 defer语句用于延迟函数调用,每次会把一个函数压入栈中,函数返回前再把延迟的函数取出并执行.延迟函数可以有参数: 延迟函数的参数在defer语句出现时就已确定下来(传值的就是当前值): 延迟函数执行按后进先出顺序执行: 延迟函数可操作主函数的具名返回值(修改返回值)

  • Golang 使用接口实现泛型的方法示例

    在C/C++中我们可以使用泛型的方法使代码得以重复使用,最常见例如stl functions:vector<int> vint or vector<float> vfloat等.这篇文章将使用interface{...}接口使Golang实现泛型. interface{...}是实现泛型的基础.如一个数组元素类型是interface{...}的话,那么实现了该接口的实体都可以被放置入数组中.注意其中并不一定必须是空接口(简单类型我们可以通过把他转化为自定义类型后实现接口).为什么i

  • golang中接口对象的转型两种方式

    接口对象的转型有两种方式: 1. 方式一:instance,ok:=接口对象.(实际类型) 如果该接口对象是对应的实际类型,那么instance就是转型之后对象,ok的值为true 配合if...else if...使用 2. 方式二: 接口对象.(type) 配合switch...case语句使用 示例: package main import ( "fmt" "math" ) type shape interface { perimeter() int area

  • golang中的空接口使用详解

    1.空接口 Golang 中的接口可以不定义任何方法,没有定义任何方法的接口就是空接口.空接口表示,没有任何约束,因此任何类型变量都可以实现空接口.空接口在实际项目中用的是非常多的,用空接口可以表示任意数据类型 func main() { // 定义一个空接口 x, x 变量可以接收任意的数据类型 var x interface{} s := "你好 golang" x = s fmt.Printf("type:%T value:%v\n", x, x) i :=

  • 从零开始学Golang的接口

    目录 前言 1.为什么需要接口? 2.接口是什么?如何定义? 3.接口实战初体验 4.如何测试是否已实现该接口? 5.空接口&类型断言 6.接口零值 7.一个类型实现多个接口 8.指针与值类型实现接口的区别 9.接口嵌套 前言 接口在面向对象编程中是经常使用的招式,也是体现多态很重要的手段.是的.Golang中也有接口这玩意儿. 1.为什么需要接口? 多数情况下,数据可能包含不同的类型,却会有一个或者多个共同点,这些共同点就是抽象的基础.前文讲到的Golang继承解决的是is-a的问题,单一继承

  • Golang空接口与类型断言的实现

    目录 空接口 定义 使用场景 空接口几个要注意的坑 类型断言 Go语言中类型断言的两种语法 类型断言配合 switch 使用 空接口 定义 空接口是特殊形式的接口类型,普通的接口都有方法,而空接口没有定义任何方法口,也因此,我们可以说所有类型都至少实现了空接口. type test interface { } 每一个接口都包含两个属性,一个是值,一个是类型. var i interface{} fmt.Printf("类型:%T----值:%v\n", i, i) //类型:<n

  • 如何判断Golang接口是否实现的操作

    前言 在看一个底层库的的时候,看到了一个比较奇怪的写法,于是乎有了本文. 主要探讨两个问题: 1.利用编译来判断Golang接口是否实现 2.延伸出的make和new的区别 正文 1.利用编译来判断Golang接口是否实现 看了一个底层通用链接池的库,有这么一行代码: var _ Pooler = new(WeightedRoundRobin) 需要解释的是:Pooler是一个接口类型. type Pooler interface { // ... } 刚开始看是疑惑的,为什么new了之后是要抛

  • Golang极简入门教程(二):方法和接口

    方法 在 Golang 中没有类,不过我们可以为结构体定义方法.我们看一个例子: 复制代码 代码如下: package main   import (     "fmt"     "math" )   type Vertex struct {     X, Y float64 }   // 结构体 Vertex 的方法 // 这里的方法接收者(method receiver)v 的类型为 *Vertex func (v *Vertex) Abs() float64

  • 初步解读Golang中的接口相关编写方法

    概述 如果说goroutine和channel是Go并发的两大基石,那么接口是Go语言编程中数据类型的关键.在Go语言的实际编程中,几乎所有的数据结构都围绕接口展开,接口是Go语言中所有数据结构的核心. Go语言中的接口是一些方法的集合(method set),它指定了对象的行为:如果它(任何数据类型)可以做这些事情,那么它就可以在这里使用. 接口的定义和使用 比如 复制代码 代码如下: type I interface{     Get() int     Put(int)   } 这段话就定

  • Go语言接口的用法详解

    一.接口的定义和好处 我们都知道接口给类提供了一种多态的机制,什么是多态,多态就是系统根据类型的具体实现完成不同的行为. 以下代码简单说明了接口的作用 package main import ( "fmt" "io" "net/http" "os" ) // init 在main 函数之前调用 func init() { if len(os.Args) != 2 { fmt.Println("Usage: ./exa

  • c语言static关键字用法详解

    目录 1.static修饰全局变量 2.static修饰函数 3.static修饰局部变量 总结: 1.static修饰全局变量 我们创建两个源文件,一个test.c,一个main.c 现在我们在test.c文件下定义一个全局变量 int g_val = 100; 我们在main.c下进行调用打印g_val我们能访问到g_val吗? 答案是可以的 如果给g_val加上static修饰我们还能再main.c下访问到吗? static int g_val = 100; 这时候答案是不行的! 因此我们

  • PHP检测接口Traversable用法详解

    本文实例讲述了PHP检测接口Traversable用法.分享给大家供大家参考,具体如下: Traversable用于检测一个类是否可以使用 foreach 进行遍历,这是一个无法在 PHP 脚本中实现的内部引擎接口,实际编程中我们使用Iterator接口或者IteratorAggregate接口来实现遍历. 接口摘要: Traversable { } Traversable 重要的一个用处就是判断一个类是否可以遍历,下面是官方例子: <?php if( !is_array( $items ) &am

  • C语言for语句用法详解

    首先,这里所提到的类C语言指的是如C.C++.C#和Java等语法和C语言一样或类似的程序设计语言.这些语言中,for语句的语法和执行流程都是一样的.本文将就这一语句的用法进行一个较为深入的讨论. for语句: 复制代码 代码如下: for (表达式1;表达式2;表达式3) {   循环语句 } 表达式1 给循环变量赋初值 表达式2 为循环条件 表达式3 用来修改循环变量的值,称为循环步长. for语句的执行流程: 例:编程计算:1+2+3+...+99+100的结果. 这是累加问题,累加问题的

  • 易语言一维数组用法详解

    在易语言中,一维数组的用法灵活性较强,所以实际应用起来也能够解决很多问题.我们本次来说明下易语言一维数组的成员操作方法及技巧. 1.首先,我们打开易语言编程工具,新建一个文件,如图所示 2.接着,我们选择要新建的类型,选择windows窗口程序,点击确认.如图所示 3.我们进入窗口界面中,从组件库中选择编辑框.按钮.树型框等放入窗口中,如图所示 4.我们选中树型框,在左侧属性事件中,选择列表项被选择事件,如图所示.在该事件中,我们只需要获取到被选中项的序号即可,如图所示 5.点击进入程序,我们在

  • Go语言学习之反射的用法详解

    目录 1. reflect 包 1.1 获取变量类型 1.2 断言处理类型转换 2. ValueOf 2.1 获取变量值 2.2 类型转换 3. Value.Set 3.1 设置变量值 3.2 示例 4. 结构体反射 4.1 查看结构体字段数量和方法数量 4.2 获取结构体属性 4.3 更改属性值 4.4 Tag原信息处理 5. 函数反射 6. 方法反射 6.1 使用 MethodByName 名称调用方法 6.2 使用 method 索引调用方法 反射指的是运行时动态的获取变量的相关信息 1.

  • Go语言学习之context包的用法详解

    目录 前言 需求一 需求二 Context 接口 emptyCtx valueCtx 类型定义 WithValue cancelCtx 类型定义 cancelCtx WithCancel timerCtx 类型定义 WithDeadline WithTimeout 总结 前言 日常 Go 开发中,Context 包是用的最多的一个了,几乎所有函数的第一个参数都是 ctx,那么我们为什么要传递 Context 呢,Context 又有哪些用法,底层实现是如何呢?相信你也一定会有探索的欲望,那么就跟

  • C语言变长数组 struct中char data[0]的用法详解

    今天在看一段代码时出现了用结构体实现变长数组的写法,一开始因为忘记了这种技术,所以老觉得作者的源码有误,最后经过我深思之后,终于想起以前看过的用struct实现变长数组的技术.下面是我在网上找到的一篇讲解很清楚的文章. 在实际的编程中,我们经常需要使用变长数组,但是C语言并不支持变长的数组.此时,我们可以使用结构体的方法实现C语言变长数组. struct MyData { int nLen; char data[0];}; 在结构中,data是一个数组名:但该数组没有元素:该数组的真实地址紧随结

  • C语言switch使用之诡异用法详解

    关于switch的用法这里不再做什么总结了,其实这个是一个便捷的快速跳转条件切换器.而关于这个功能最常用的技术讨论点在于case后面的break以及default.这里不讨论这些,直接看下面的代码: #include"stdio.h" int main(void) { int num = 0; switch(num) { printf("functionrun!\n"); } return 0; } 上面的代码中用到了一个switch,但是代码块中没有任何case以

  • Spring表达式语言SpEL用法详解

    这篇文章主要介绍了spring表达式语言SpEL用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 (1)spring表达式语言是一个支持运行时查询和操作对象图得我强大表达式语言. (2)语言类似于EL:SpEL使用#{...}作为定界符.所有在大括号中的字符串均被认为是SpEL. (3)SpEL为bean的属性进行动态赋值提供了便利. (4)通过SpEL可以实现: 通过Bean的id对Bean进行引用 调用方法及引用对象的属性 计算表达式

随机推荐