Python numpy之线性代数与随机漫步
目录
- 线性代数
- 伪随机数生成
- 随即漫步
- 示例
线性代数
线性代数,矩阵计算,优化与内存;比如矩阵乘法,分解,行列式等数学知识,是所有数组类库的重要组成部分。和MATLAB等其他语言相比,numpy的线性代数中有所不同的是矩阵相乘不是点积运算而是逐个元素计算,因此在numpy里面都有一个特定的函数来计算,它就是dot,
语法如下:
numpy之线性代数函数
diag |
将一个方阵的对角(或非对角)元素作为一维数组返回,或者将一个一维数转换为一个方阵,并且在非对角线上有零点 |
dot |
矩阵点乘 |
trace |
计算对角元素和 |
det |
计算矩阵行列式 |
eig |
计算方阵特征值和特征向量 |
inv |
计算方阵的逆矩阵 |
pinv |
计算矩阵的伪逆 |
qr |
计算QR分解 |
svd |
计算奇异值分解 |
solve |
求x的线性系统:Ax = b,其中A是方阵 |
lstsq |
计算Ax = b 的最小二乘解 |
伪随机数生成
numpy.random模块填补了Python内建的random模块的不足,可以高效的生成多种概率分布下的完整样本数组。比如我们使用normal来获得一个8*8的正态分布样本数组
随机数种子:
什么是随机数种子?举一个简单的例子,如果我的随机种子是100,那么计算机就会在0-100中随机产生,看下面
随机种子是1111....
seed |
向随机数生成器传递随机状态种子 |
permutation |
返回一个序列的随机排列,或者返回一个乱序的整数范围序列 |
shuffle |
随机排列一个序列 |
rand |
从均匀分布中抽取样本 |
randint |
根据给定的由低到高的范围抽取随机整数 |
randn |
从均值0方差1的正态分布中抽取样本(MATLAB型接口) |
binomial |
从二项分布中抽取样本 |
normal |
从高斯分布中抽取样本 |
beta |
从beta中抽取样本 |
chisquare |
从卡方分布中抽取样本 |
gamma |
从伽马分布中抽取样本 |
uniform |
从均匀分布抽取样本 |
上述的表格如果你看不懂,可以去看一看概率论与数理统计的知识,方便你深度理解每一个概念和用法
随即漫步
示例
上面模拟的是一个简单的随机漫步,就比如说我们的掷硬币,每次的结果1或者-1,然后计算积累值
到此这篇关于Python numpy之线性代数与随机漫步的文章就介绍到这了,更多相关Python numpy线性代数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
利用Python NumPy库及Matplotlib库绘制数学函数图像
目录 前言 NumPy与Matplotlib 函数绘图 所需库函数语法 导入所需模块 一元一次函数 一元二次函数 指数函数 正弦函数 余弦函数 高级玩法 总结 前言 最近开始学习数学了,有一些题目的函数图像非常有特点,有一些函数图像手绘比较麻烦,那么有没有什么办法做出又标准又好看的数学函数图像呢? 答案是有很多的,有很多不错的软件都能画出函数图像,但是,我想到了Python的数据可视化.Python在近些年非常火热,在数据分析以及深度学习等方面得到广泛地运用,其丰富的库使其功能愈加强大. 这里我
-
Python中的Numpy 面向数组编程常见操作
目录 数组编程 简单例子 逻辑条件作为数组操作 数学和统计方法 布尔数组的方法 排序 唯一值和其他的逻辑集合 数组编程 使用Numpy数组可以使你利用简单的数组表达式完成多项数据操作任务,而不需要编写大量的循环,这个极大的帮助了我们高效的解决问题.我们都知道向量化的数组操作比纯Python的等价实现在速度这一方面快很多,至于多少(一到两个数量级)甚至更多,生活需要慢节奏,但是计算就不可以了,掌握高效的计算模型,可以让数据分析如虎添翼! 简单例子 我们生成从-3.14--3.14,按照0.01的间
-
Python numpy线性代数用法实例解析
这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 numpy中线性代数用法 矩阵乘法 >>> import numpy as np >>> x=np.array([[1,2,3],[4,5,6]]) >>> y=np.array([[7,8],[-1,7],[8,9]]) >>> x array([[1, 2, 3], [4
-
详解Python如何循环遍历Numpy中的Array
目录 1. 引言 2. 使用For循环遍历 3. 函数 nditer() 4. 函数 ndenumerate() 5. 结论 1. 引言 Numpy是Python中常见的数据处理库.Numpy是 Numerical Python的缩写,它是数据科学中经常使用的库.Numpy专门用于处理矩阵运算,因为它包含各式各样的处理函数.在本文中,我们主要用于学习如何迭代遍历访问矩阵中的元素. 闲话少说,我们直接开始吧! 2. 使用For循环遍历 首先我们来看个例子,使用循环来遍历数组,样例代码如下: imp
-
Python中11种NumPy高级操作总结
目录 1.数组上的迭代 2.数组形状修改函数 1.ndarray.reshape 2.ndarray.flat 3.ndarray.flatten 3.数组翻转操作函数 1.numpy.transpose 2. numpy.ndarray.T 3.numpy.swapaxes 4.numpy.rollaxis 4.数组修改维度函数 1.numpy.broadcast_to 2.numpy.expand_dims 3.numpy.squeeze 5.数组的连接操作 1.numpy.stack 2.
-
python numpy.ndarray中如何将数据转为int型
目录 numpy.ndarray中数据转为int型 出现错误only size-1 arrays can be converted to Python scalars numpy.ndarray中数据转为int型 首先了解内容与类型 >>>print(a) (array([[0.01124722], [0.21752586], [0.05586815], [0.03558792]]), array([[ 327], [ 366], [1887], [1153], [1792]], dty
-
python数学建模(SciPy+ Numpy+Pandas)
目录 前言 SciPy 学习 SciPy基本操作 1-求解非线性方程(组) 2-积分 3-最小二乘解 4-最大模特征值及对应的特征向量 Numpy学习(续) 1 Numpy 数学函数 1-1三角函数 2-舍入函数 2-1 numpy.around() 2-2 numpy.floor() 2-3 numpy.ceil() 3 Numpy算术函数 Pandas学习(续) Pandas 数据排序 DataFrame的排序 Pandas字符串处理 前言 SciPy 是一个开源的 Python 算法库和数
-
Python之Numpy 常用函数总结
目录 通用函数 常见的简单数组函数 一元函数 二元函数 通用函数 常见的简单数组函数 先看看代码操作: mport numpy as np # # 产生一个数组 arr=np.arange(15) arr >>array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) # 对里面的元素进行开根号处理 np.sqrt(arr) >>array([0. , 1. , 1.41421356, 1.73205081, 2. , 2.
-
Python numpy之线性代数与随机漫步
目录 线性代数 伪随机数生成 随即漫步 示例 线性代数 线性代数,矩阵计算,优化与内存:比如矩阵乘法,分解,行列式等数学知识,是所有数组类库的重要组成部分.和MATLAB等其他语言相比,numpy的线性代数中有所不同的是矩阵相乘不是点积运算而是逐个元素计算,因此在numpy里面都有一个特定的函数来计算,它就是dot, 语法如下: numpy之线性代数函数 diag 将一个方阵的对角(或非对角)元素作为一维数组返回,或者将一个一维数转换为一个方阵,并且在非对角线上有零点 dot 矩阵点乘 trac
-
Python超详细分步解析随机漫步
创建RandomWalk类 为模拟随机漫步,我们将创建一个RandomWalk类,随机选择前进方向,这个类有三个属性,一个存储随机漫步的次数,另外两个存储随机漫步的每个点的x,y坐标,每次漫步都从点(0,0)出发 from random import choice class RandomWalk(): '''一个生成随机漫步数据的类''' def __init__(self,num_points=5000): '''初始化随机漫步的属性''' self.num_points = num_poi
-
python使用matplotlib库生成随机漫步图
本教程使用python来生成随机漫步数据,再使用matplotlib将数据呈现出来 开发环境 操作系统: Windows10 IDE: Pycharm 2017.1.3 Python版本: Python3.6 Python第三方库:matplotlib 开始实战 1. 创建RandomWalk()类 为了模拟随机漫步,我们将创建一个名为RandomWalk的类, 它随机地选择方向. from random import choice class RandomWalk(): ""&quo
-
python实现随机漫步算法
本文实例为大家分享了python实现随机漫步的具体代码,供大家参考,具体内容如下 编写randomwalk类 from random import choice class randomwalk(): def __init__(self,num_points=5000): self.num_points=num_points self.x_values=[0] self.y_values=[0] def fill_walk(self): while len(self.x_values)<self
-
python实现随机漫步方法和原理
我们通过模拟随机漫步可以说明如何运用数组运算.通过内置的random模块以纯Python的方式实现1000步的随机漫步 根据前100个随机漫步值生成的折线图, plt.plot(walk[:100]) 随机漫步中各步的累计和,可以用一个数组运算来实现.因此,我用np.random模块一次性随机产生1000个"掷硬币"结果(即两个数中任选一个),将其分别设置为1或-1,然后计算累计和 我们就可以沿着漫步路径做一些统计工作了,比如求取最大值和最小值 假设我们想要知道本次随机漫步需要多久才能
-
Python实现随机漫步功能
随机漫步生成是无规则的,是系统自行选择的结果.根据设定的规则自定生成,上下左右的方位,每次所经过的方向路径. 首先,创建一个RandomWalk()类和fill_walk()函数 random_walk.py from random import choice class Randomwalk (): '''一个生成随机数漫步的类''' def __init__(self,num_point=5000): '''初始化随机漫步的属性''' self.num_point = num_point #
-
Python使用matplotlib绘制随机漫步图
本文我们来做一个简单的随机漫步数据图,进一步了解matplotlib的使用, 使用Python生成随机漫步数据,再使用matplotlib绘制出来, 随机漫步是这样行走得到的路径: 每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策决定的. 创建一个RandomWalk雷,随机的选择前进的方向,一共有三个属性,一个是存储随机漫步次数的变量,其他两个是列表,分别存储随机漫步经过的每个点的x和y坐标 下面是代码 from random import choice class Random
-
Python NumPy随机抽模块介绍及方法
目录 1. 随机数 2. 随机抽样 3. 正态分布 4. 伪随机数的深度思考 1. 随机数 np.random.random()是最常用的随机数生成函数,该函数生成的随机数随机均匀分布于[0, 1)区间.如果不提供参数,np.random.random()函数返回一个浮点型随机数.np.random.random()函数还可以接受一个整型或元组参数,用于指定返回的浮点型随机数数组的结构(shape).也有很多人习惯使用np.random.rand()函数生成随机数,其功能和np.random.r
-
python散点图实例之随机漫步
随机漫步是这样行走得到的途径:每次行走都是完全随机的,没有明确的方向,结果是由一系列随机决策决定的. random_walk.py #random_walk.py from random import choice # -*- coding: utf-8 -*- class RandomWalk(): #一个生成随机漫步数据的类 def __init__(self,num_points=5000): self.num_points=num_points self.x_values=[0] sel
随机推荐
- 理解Objective-C的变量以及面相对象的继承特性
- python类继承用法实例分析
- 正则表达式号码靓号类型判断代码
- ASP.NET网站第一次访问慢的解决方法
- asp.net 防止用户通过后退按钮重复提交表单
- js时间查询插件使用详解
- 一个简单的PHP&MYSQL留言板源码第1/2页
- PHP判断文件是否存在、是否可读、目录是否存在的代码
- Python基于pygame实现的font游戏字体(附源码)
- js 上传图片预览问题
- 详解JavaScript的另类写法
- 基于jQuery的可以控制左右滚动及自动滚动效果的代码
- nginx,apache的alias和认证功能
- 基于JS2Image实现圣诞树代码
- c语言_构建一个静态二叉树实现方法
- Python的Django框架中的数据过滤功能
- PHP实现货币换算的方法
- 一道关于C#参数传递的面试题分析
- 利用boost获取时间并格式化的方法
- Python实现的字典值比较功能示例