Python中更优雅的日志记录方案详解

目录
  • 常见使用
  • loguru
    • 安装
    • 基本使用
    • 详细使用

在 Python 中,一般情况下我们可能直接用自带的 logging 模块来记录日志,包括我之前的时候也是一样。在使用时我们需要配置一些 Handler、Formatter 来进行一些处理,比如把日志输出到不同的位置,或者设置一个不同的输出格式,或者设置日志分块和备份。但其实个人感觉 logging 用起来其实并不是那么好用,其实主要还是配置较为繁琐。

常见使用

首先看看 logging 常见的解决方案吧,我一般会配置输出到文件、控制台和 Elasticsearch。输出到控制台就仅仅是方便直接查看的;输出到文件是方便直接存储,保留所有历史记录的备份;输出到 Elasticsearch,直接将 Elasticsearch 作为存储和分析的中心,使用 Kibana 可以非常方便地分析和查看运行情况。

所以在这里我基本会对 logging 做如下的封装写法:

import logging
import sys
from os import makedirs
from os.path import dirname, exists

from cmreslogging.handlers import CMRESHandler

loggers = {}

LOG_ENABLED = True  # 是否开启日志
LOG_TO_CONSOLE = True  # 是否输出到控制台
LOG_TO_FILE = True  # 是否输出到文件
LOG_TO_ES = True  # 是否输出到 Elasticsearch

LOG_PATH = './runtime.log'  # 日志文件路径
LOG_LEVEL = 'DEBUG'  # 日志级别
LOG_FORMAT = '%(levelname)s - %(asctime)s - process: %(process)d - %(filename)s - %(name)s - %(lineno)d - %(module)s - %(message)s'  # 每条日志输出格式
ELASTIC_SEARCH_HOST = 'eshost'  # Elasticsearch Host
ELASTIC_SEARCH_PORT = 9200  # Elasticsearch Port
ELASTIC_SEARCH_INDEX = 'runtime'  # Elasticsearch Index Name
APP_ENVIRONMENT = 'dev'  # 运行环境,如测试环境还是生产环境

def get_logger(name=None):
    """
    get logger by name
    :param name: name of logger
    :return: logger
    """
    global loggers

    if not name: name = __name__

    if loggers.get(name):
        return loggers.get(name)

    logger = logging.getLogger(name)
    logger.setLevel(LOG_LEVEL)

    # 输出到控制台
    if LOG_ENABLED and LOG_TO_CONSOLE:
        stream_handler = logging.StreamHandler(sys.stdout)
        stream_handler.setLevel(level=LOG_LEVEL)
        formatter = logging.Formatter(LOG_FORMAT)
        stream_handler.setFormatter(formatter)
        logger.addHandler(stream_handler)

    # 输出到文件
    if LOG_ENABLED and LOG_TO_FILE:
        # 如果路径不存在,创建日志文件文件夹
        log_dir = dirname(log_path)
        if not exists(log_dir): makedirs(log_dir)
        # 添加 FileHandler
        file_handler = logging.FileHandler(log_path, encoding='utf-8')
        file_handler.setLevel(level=LOG_LEVEL)
        formatter = logging.Formatter(LOG_FORMAT)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)

    # 输出到 Elasticsearch
    if LOG_ENABLED and LOG_TO_ES:
        # 添加 CMRESHandler
        es_handler = CMRESHandler(hosts=[{'host': ELASTIC_SEARCH_HOST, 'port': ELASTIC_SEARCH_PORT}],
                                  # 可以配置对应的认证权限
                                  auth_type=CMRESHandler.AuthType.NO_AUTH,
                                  es_index_name=ELASTIC_SEARCH_INDEX,
                                  # 一个月分一个 Index
                                  index_name_frequency=CMRESHandler.IndexNameFrequency.MONTHLY,
                                  # 额外增加环境标识
                                  es_additional_fields={'environment': APP_ENVIRONMENT}
                                  )
        es_handler.setLevel(level=LOG_LEVEL)
        formatter = logging.Formatter(LOG_FORMAT)
        es_handler.setFormatter(formatter)
        logger.addHandler(es_handler)

    # 保存到全局 loggers
    loggers[name] = logger
    return logger

定义完了怎么使用呢?只需要使用定义的方法获取一个 logger,然后 log 对应的内容即可:

logger = get_logger()
logger.debug('this is a message')

运行结果如下:

DEBUG - 2019-10-11 22:27:35,923 - process: 99490 - logger.py - __main__ - 81 - logger - this is a message

我们看看这个定义的基本实现吧。首先这里一些常量是用来定义 logging 模块的一些基本属性的,比如 LOG_ENABLED 代表是否开启日志功能,LOG_TO_ES 代表是否将日志输出到 Elasticsearch,另外还有很多其他的日志基本配置,如 LOG_FORMAT 配置了日志每个条目输出的基本格式,另外还有一些连接的必要信息。这些变量可以和运行时的命令行或环境变量对接起来,可以方便地实现一些开关和配置的更换。

然后定义了这么一个 get_logger 方法,接收一个参数 name。首先该方法拿到 name 之后,会到全局的 loggers 变量里面查找,loggers 变量是一个全局字典,如果有已经声明过的 logger,直接将其获取返回即可,不用再将其二次初始化。如果 loggers 里面没有找到 name 对应的 logger,那就进行创建即可。创建 logger 之后,可以为其添加各种对应的 Handler,如输出到控制台就用 StreamHandler,输出到文件就用 FileHandler 或 RotatingFileHandler,输出到 Elasticsearch 就用 CMRESHandler,分别配置好对应的信息即可。

最后呢,将新建的 logger 保存到全局的 loggers 里面并返回即可,这样如果有同名的 logger 便可以直接查找 loggers 直接返回了。

在这里依赖了额外的输出到 Elasticsearch 的包,叫做 CMRESHandler,它可以支持将日志输出到 Elasticsearch 里面,如果要使用的话可以安装一下:

pip install CMRESHandler其 GitHub 地址是:https://github.com/cmanaha/python-elasticsearch-logger,具体的使用方式可以看看它的官方说明,如配置认证信息,配置 Index 分隔信息等等。

好,上面就是我之前常用的 logging 配置,通过如上的配置,我就可以实现将 logging 输出到三个位置,并可以实现对应的效果。比如输出到 Elasticsearch 之后,我就可以非常方便地使用 Kibana 来查看当前运行情况,ERROR Log 的比例等等,

也可以在它的基础上做更进一步的统计分析。

loguru

上面的实现方式已经是一个较为可行的配置方案了。然而,我还是会感觉到有些 Handler 配起来麻烦,尤其是新建一个项目的很多时候懒得去写一些配置。即使是不用上文的配置,用最基本的几行 logging 配置,像如下的通用配置:

import logging
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

我也懒得去写,感觉并不是一个优雅的实现方式。

有需求就有动力啊,这不,就有人实现了这么一个库,叫做 loguru,可以将 log 的配置和使用更加简单和方便。

下面我们来看看它到底是怎么用的吧。

安装

首先,这个库的安装方式很简单,就用基本的 pip 安装即可,Python 3 版本的安装如下:

pip3 install loguru

安装完毕之后,我们就可以在项目里使用这个 loguru 库了。

基本使用

那么这个库怎么来用呢?我们先用一个实例感受下:

from loguru import logger

logger.debug('this is a debug message')

看到了吧,不需要配置什么东西,直接引入一个 logger,然后调用其 debug 方法即可。

在 loguru 里面有且仅有一个主要对象,那就是 logger,loguru 里面有且仅有一个 logger,而且它已经被提前配置了一些基础信息,比如比较友好的格式化、文本颜色信息等等。

上面的代码运行结果如下:

2019-10-13 22:46:12.367 | DEBUG    | __main__:<module>:4 - this is a debug message

可以看到其默认的输出格式是上面的内容,有时间、级别、模块名、行号以及日志信息,不需要手动创建 logger,直接使用即可,另外其输出还是彩色的,看起来会更加友好。

以上的日志信息是直接输出到控制台的,并没有输出到其他的地方,如果想要输出到其他的位置,比如存为文件,我们只需要使用一行代码声明即可。

例如将结果同时输出到一个 runtime.log 文件里面,可以这么写:

from loguru import logger

logger.add('runtime.log')
logger.debug('this is a debug')

很简单吧,我们也不需要再声明一个 FileHandler 了,就一行 add 语句搞定,运行之后会发现目录下 runtime.log 里面同样出现了刚刚控制台输出的 DEBUG 信息。

上面就是一些基本的使用,但这还远远不够,下面我们来详细了解下它的一些功能模块。

详细使用

既然是日志,那么最常见的就是输出到文件了。loguru 对输出到文件的配置有非常强大的支持,比如支持输出到多个文件,分级别分别输出,过大创建新文件,过久自动删除等等。

下面我们分别看看这些怎样来实现,这里基本上就是 add 方法的使用介绍。因为这个 add 方法就相当于给 logger 添加了一个 Handler,它给我们暴露了许多参数来实现 Handler 的配置,下面我们来详细介绍下。

首先看看它的方法定义吧:

def add(
        self,
        sink,
        *,
        level=_defaults.LOGURU_LEVEL,
        format=_defaults.LOGURU_FORMAT,
        filter=_defaults.LOGURU_FILTER,
        colorize=_defaults.LOGURU_COLORIZE,
        serialize=_defaults.LOGURU_SERIALIZE,
        backtrace=_defaults.LOGURU_BACKTRACE,
        diagnose=_defaults.LOGURU_DIAGNOSE,
        enqueue=_defaults.LOGURU_ENQUEUE,
        catch=_defaults.LOGURU_CATCH,
        **kwargs
    ):
    pass

看看它的源代码,它支持这么多的参数,如 level、format、filter、color 等等。

sink

另外我们还注意到它有个非常重要的参数 sink,我们看看官方文档,可以了解到通过 sink 我们可以传入多种不同的数据结构,汇总如下:

•sink 可以传入一个 file 对象,例如 sys.stderr 或者 open('file.log', 'w') 都可以。

•sink 可以直接传入一个 str 字符串或者 pathlib.Path 对象,其实就是代表文件路径的,如果识别到是这种类型,它会自动创建对应路径的日志文件并将日志输出进去。

•sink 可以是一个方法,可以自行定义输出实现。

•sink 可以是一个 logging 模块的 Handler,比如 FileHandler、StreamHandler 等等,或者上文中我们提到的 CMRESHandler 照样也是可以的,这样就可以实现自定义 Handler 的配置。

•sink 还可以是一个自定义的类,具体的实现规范可以参见官方文档。

所以说,刚才我们所演示的输出到文件,仅仅给它传了一个 str 字符串路径,他就给我们创建了一个日志文件,就是这个原理。

format、filter、level

下面我们再了解下它的其他参数,例如 format、filter、level 等等。

其实它们的概念和格式和 logging 模块都是基本一样的了,例如这里使用 format、filter、level 来规定输出的格式:

logger.add('runtime.log', format="{time} {level} {message}", filter="my_module", level="INFO")

删除 sink

另外添加 sink 之后我们也可以对其进行删除,相当于重新刷新并写入新的内容。

删除的时候根据刚刚 add 方法返回的 id 进行删除即可,看下面的例子:

from loguru import logger

trace = logger.add('runtime.log')
logger.debug('this is a debug message')
logger.remove(trace)
logger.debug('this is another debug message')

看这里,我们首先 add 了一个 sink,然后获取它的返回值,赋值为 trace。随后输出了一条日志,然后将 trace 变量传给 remove 方法,再次输出一条日志,看看结果是怎样的。

控制台输出如下:

2019-10-13 23:18:26.469 | DEBUG    | __main__:<module>:4 - this is a debug message
2019-10-13 23:18:26.469 | DEBUG    | __main__:<module>:6 - this is another debug message

日志文件 runtime.log 内容如下:

2019-10-13 23:18:26.469 | DEBUG    | __main__:<module>:4 - this is a debug message

可以发现,在调用 remove 方法之后,确实将历史 log 删除了。

这样我们就可以实现日志的刷新重新写入操作。

rotation 配置

用了 loguru 我们还可以非常方便地使用 rotation 配置,比如我们想一天输出一个日志文件,或者文件太大了自动分隔日志文件,我们可以直接使用 add 方法的 rotation 参数进行配置。

我们看看下面的例子:

logger.add('runtime_{time}.log', rotation="500 MB")

通过这样的配置我们就可以实现每 500MB 存储一个文件,每个 log 文件过大就会新创建一个 log 文件。我们在配置 log 名字时加上了一个 time 占位符,这样在生成时可以自动将时间替换进去,生成一个文件名包含时间的 log 文件。

另外我们也可以使用 rotation 参数实现定时创建 log 文件,例如:

logger.add('runtime_{time}.log', rotation='00:00')

这样就可以实现每天 0 点新创建一个 log 文件输出了。

另外我们也可以配置 log 文件的循环时间,比如每隔一周创建一个 log 文件,写法如下:

logger.add('runtime_{time}.log', rotation='1 week')

这样我们就可以实现一周创建一个 log 文件了。

retention 配置

很多情况下,一些非常久远的 log 对我们来说并没有什么用处了,它白白占据了一些存储空间,不清除掉就会非常浪费。retention 这个参数可以配置日志的最长保留时间。

比如我们想要设置日志文件最长保留 10 天,可以这么来配置:

logger.add('runtime.log', retention='10 days')

这样 log 文件里面就会保留最新 10 天的 log,妈妈再也不用担心 log 沉积的问题啦。

compression 配置

loguru 还可以配置文件的压缩格式,比如使用 zip 文件格式保存,示例如下:

logger.add('runtime.log', compression='zip')

这样可以更加节省存储空间。

字符串格式化

loguru 在输出 log 的时候还提供了非常友好的字符串格式化功能,像这样:

logger.info('If you are using Python {}, prefer {feature} of course!', 3.6, feature='f-strings')

这样在添加参数就非常方便了。

Traceback 记录

在很多情况下,如果遇到运行错误,而我们在打印输出 log 的时候万一不小心没有配置好 Traceback 的输出,很有可能我们就没法追踪错误所在了。

但用了 loguru 之后,我们用它提供的装饰器就可以直接进行 Traceback 的记录,类似这样的配置即可:

@logger.catch
def my_function(x, y, z):
    # An error? It's caught anyway!
    return 1 / (x + y + z)

我们做个测试,我们在调用时三个参数都传入 0,直接引发除以 0 的错误,看看会出现什么情况:

my_function(0, 0, 0)运行完毕之后,可以发现 log 里面就出现了 Traceback 信息,而且给我们输出了当时的变量值,真的是不能再赞了!结果如下:

> File "run.py", line 15, in <module>
    my_function(0, 0, 0)
    └ <function my_function at 0x1171dd510>

File "/private/var/py/logurutest/demo5.py", line 13, in my_function
    return 1 / (x + y + z)
                │   │   └ 0
                │   └ 0
                └ 0

ZeroDivisionError: division by zero

因此,用 loguru 可以非常方便地实现日志追踪,debug 效率可能要高上十倍了?

以上就是Python中更优雅的日志记录方案详解的详细内容,更多关于Python日志记录的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python Logging 日志记录入门学习

    Python Logging原来真的远比我想象的要复杂很多很多,学习路线堪比git.但是又绕不过去,alternatives又少,所以必须要予以重视,踏踏实实认认真真的来好好学学才行. 学习Logging的目的: 简单脚本还好,print足够. 但是稍微复杂点,哪怕是三四个文件加起来两三百行代码,调试也开始变复杂起来了. 再加上如果是后台长期运行的那种脚本,运行信息的调查更是复杂起来. 一开始我还在各种查crontab的日志查看,或者是python后台运行查看,或者是python stdout的

  • python日志记录模块实例及改进

    python 打印对象的所有属性值: def prn_obj(obj): print '\n'.join(['%s:%s' % item for item in obj.__dict__.items()]) Python logger对象属性(由上述函数获取的) name:get_data parent:<logging.RootLogger instance at 0x1d8bd88> handlers:[<logging.FileHandler instance at 0x21bcc

  • Python中使用logging和traceback模块记录日志和跟踪异常

    logging模块 logging模块用于输出运行日志,可以设置不同的日志等级,保存信息到日志文件中等. 相比print,logging可以设置日志的等级,控制在发布版本中的输出内容,并且可以指定日志的输出格式. 1. 使用logging在终端输出日志 #!/usr/bin/env python # -*- coding:utf-8 -*- import logging # 引入logging模块 # 设置打印日志级别 CRITICAL > ERROR > WARNING > INFO

  • Python 程序员必须掌握的日志记录

    写在之前 在我们的现实生活中,「日志记录」其实是一件非常重要的事情,比如银行的转账记录,汽车的行车记录仪记录行驶过程中的一切,如果出现了什么问题,我们可以通过「日志记录」来搞清楚到底发生了什么事情. 除了在生活中,在日常的系统开发以及调试等过程中,记录日志同样是一件很重要的事情.很多编程初学者并没有「记录日志」的习惯,认为记录日志是一件可有可无的事情,出现问题的时候只要使用 print 函数打印一下程序的中间结果即可,真是 too young too naive.只是 print 的话对于简单的

  • 记录Python脚本的运行日志的方法

    一.logging模块 Python中有一个模块logging,可以直接记录日志 # 日志级别 # CRITICAL 50 # ERROR 40 # WARNING 30 # INFO 20 # DEBUG 10 logging.basicConfig()函数中的具体参数: filename:   指定的文件名创建FiledHandler,这样日志会被存储在指定的文件中: filemode:   文件打开方式,在指定了filename时使用这个参数,默认值为"w"还可指定为"

  • python实现简单日志记录库glog的使用

    这篇文章主要介绍了python实现简单日志记录库glog的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一. glog的简介 glog所记录的日志信息总是记录到标准的stderr中,即控制台终端. 每一行日志记录总是会添加一个谷歌风格的前缀,即google-style log prefix, 它的形式如下: E0924 22:19:15.123456 19552 filename.py:87] some message 上面红色部分加粗的

  • Python中更优雅的日志记录方案详解

    目录 常见使用 loguru 安装 基本使用 详细使用 在 Python 中,一般情况下我们可能直接用自带的 logging 模块来记录日志,包括我之前的时候也是一样.在使用时我们需要配置一些 Handler.Formatter 来进行一些处理,比如把日志输出到不同的位置,或者设置一个不同的输出格式,或者设置日志分块和备份.但其实个人感觉 logging 用起来其实并不是那么好用,其实主要还是配置较为繁琐. 常见使用 首先看看 logging 常见的解决方案吧,我一般会配置输出到文件.控制台和

  • 如何在vue中更优雅的封装第三方组件详解

    目录 一.需求场景描述 二.关键技术点介绍 1.v-bind="$attrs" 2.v-on="$listeners" 三.封装el-image的代码示例 总结 一.需求场景描述 实际开发的时候,为了减少重复造轮子,提高工作效率,节省开发时间成本, 免不了会使用ui组件库,比如在web前端很受欢迎的element-ui. 但有的时候,我们需要在原组件的基础上做些改造,比如一个image组件, 我们需要统一在图片加载失败的时候展示的特定图,每次使用组件都加一遍, 麻烦

  • python编程中简洁优雅的推导式示例详解

    目录 1. 列表推导式 增加条件语句 多重循环 更多用法 2. 字典推导式 3. 集合推导式 4. 元组推导式 Python语言有一种独特的推导式语法,相当于语法糖的存在,可以帮助你在某些场合写出较为精简酷炫的代码.但没有它,也不会有太多影响.Python语言有几种不同类型的推导式. 1. 列表推导式 列表推导式是一种快速生成列表的方式.其形式是用方括号括起来的一段语句,如下例子所示: lis = [x * x for x in range(1, 10)] print(lis) 输出 [1, 4

  • Python 中的函数装饰器和闭包详解

    函数装饰器可以被用于增强方法的某些行为,如果想自己实现装饰器,则必须了解闭包的概念. 装饰器的基本概念 装饰器是一个可调用对象,它的参数是另一个函数,称为被装饰函数.装饰器可以修改这个函数再将其返回,也可以将其替换为另一个函数或者可调用对象. 例如:有个名为 decorate 的装饰器: @decorate def target(): print('running target()') 上述代码的写法和以下写法的效果是一样的: def target(): print('running targe

  • Python 中 Virtualenv 和 pip 的简单用法详解

    本文介绍了Python 中 Virtualenv 和 pip 的简单用法详解,分享给大家,具体如下: 0X00 安装环境 我们在 Python 开发和学习过程中需要用到各种库,然后在各个不同的项目和作品里可能用的版本还不一样,正因为有这种问题的存在才催生了virtualenv的诞生.virtualenv 可以在电脑上创建一个虚拟环境,可以针对每一个项目创建一个虚拟环境,这样就不用担心各个不同的项目用不同版本的库的时候出现的冲突了. 下面的内容只适用于 Linux/OSX,未经 Windows 环

  • python中函数总结之装饰器闭包详解

    1.前言 函数也是一个对象,从而可以增加属性,使用句点来表示属性. 如果内部函数的定义包含了在外部函数中定义的对象的引用(外部对象可以是在外部函数之外),那么内部函数被称之为闭包. 2.装饰器 装饰器就是包装原来的函数,从而在不需要修改原来代码的基础之上,可以做更多的事情. 装饰器语法如下: @deco2 @deco1 def func(arg1,arg2...): pass 这个表示了有两个装饰器的函数,那么表示的含义为:func = deco2(deco1(func)) 无参装饰器语法如下:

  • Python中set与frozenset方法和区别详解

    set(可变集合)与frozenset(不可变集合)的区别: set无序排序且不重复,是可变的,有add(),remove()等方法.既然是可变的,所以它不存在哈希值.基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交集), difference(差集)和sysmmetric difference(对称差集)等数学运算. sets 支持 x in set, len(set),和 for x in set.作为一个无序的集合,sets不记录元素位

  • 对python中数据集划分函数StratifiedShuffleSplit的使用详解

    文章开始先讲下交叉验证,这个概念同样适用于这个划分函数 1.交叉验证(Cross-validation) 交叉验证是指在给定的建模样本中,拿出其中的大部分样本进行模型训练,生成模型,留小部分样本用刚建立的模型进行预测,并求这小部分样本的预测误差,记录它们的平方加和.这个过程一直进行,直到所有的样本都被预测了一次而且仅被预测一次,比较每组的预测误差,选取误差最小的那一组作为训练模型. 下图所示 2.StratifiedShuffleSplit函数的使用 官方文档 用法: from sklearn.

  • Python排序算法之插入排序及其优化方案详解

    一.插入排序 插入排序与我们平时打扑克牌非常相似,将新摸到的牌插入到已有的牌中合适的位置,而已有的牌往往是有序的. 1.1 执行流程 (1)在执行过程中,插入排序会将序列分为2部分,头部是已经排好序的,尾部是待排序的. (2)从头开始扫描每一个元素,每当扫描到一个元素,就将它插入到头部合适的位置,使得头部数据依然保持有序 1.2 逆序对 数组 <2,3,8,6,1> 的逆序对为:<2,1> ❤️,1> <8,1> <8,6> <6,1>,共

  • Python中可变变量与不可变变量详解

    目录 一 .常见的变量分类 1.变量的创建 二.变量分类 1..常见的不可变变量 2.常见的可变变量 三.拷贝的差别 四.参数传递的差别 前言: C++不同于Python的显著特点,就是有指针和引用,这让我们在调用参数的时候更加清晰明朗.但Python中没有指针和引用的概念,导致很多时候参数的传递和调用的时候会产生疑问:我到底是复制了一份新的做操作还是在它指向的内存操作? 这个问题根本上和可变.不可变变量有关,我想把这个二者的区别和联系做一个总结,以更深入地理解Python内部的操作.我本身非科

随机推荐