Python pandas系列之众数和分位数

目录
  • 准备
  • 1.求众数
    • 1.1对全表进行操作
      • 1.1.1求取每列的众数
      • 1.1.2 求取每行的众数
    • 1.2 对单独的一行或者一列进行操作
      • 1.2.1 求取单独某一列的众数
      • 1.2.2 求取单独某一行的众数
    • 1.3 对多行或者多列进行操作
      • 1.3.1 求取多列的众数
      • 1.3.2 求取多行的众数
  • 2 求分位数
    • 2.1 求取不同分位的分位数
      • 2.1.1 四分之一分位数
      • 2.1.2 四分之三分位数
    • 2.2对全表进行操作
      • 2.2.1对每一列求分位数
      • 2.2.2 对每一行求分位数
    • 2.3 对单独的一行或者一列进行操作
      • 2.3.1 对某一列求分位数
      • 2.3.2 对某一行求分位数
    • 2.4 对多行或者多列进行操作
      • 2.4.1 对多列求分位数
      • 2.4.2 对多行求分位数
  • 附:pandas 和 numpy计算分位数的区别
  • 总结

准备

本文用到的表格内容如下:

先来看一下原始情形:

import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df)

result:

数学成绩  语文成绩  英语成绩
0    89    78    98
1    35    34    34
2    43    56    25
3    35    78    83
4    67    46    65
5    89    89    83
6    96    45    83
7    35    67    45
8    35    78    83

1.求众数

1.1对全表进行操作

1.1.1求取每列的众数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.var())

result:

数学成绩  语文成绩  英语成绩
0    35    78    83

1.1.2 求取每行的众数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.mode(axis=1))

result:

0     1     2
0  78.0  89.0  98.0
1  34.0   NaN   NaN
2  25.0  43.0  56.0
3  35.0  78.0  83.0
4  46.0  65.0  67.0
5  89.0   NaN   NaN
6  45.0  83.0  96.0
7  35.0  45.0  67.0
8  35.0  78.0  83.0

1.2 对单独的一行或者一列进行操作

1.2.1 求取单独某一列的众数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.mode(axis=1))

result:

0    35
dtype: int64

1.2.2 求取单独某一行的众数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].mode())

result:

数学成绩  语文成绩  英语成绩
0    89    78    98

1.3 对多行或者多列进行操作

1.3.1 求取多列的众数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['数学成绩', "语文成绩"]].mode())

result:

数学成绩  语文成绩
0    35    78

1.3.2 求取多行的众数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].mode())

result:

数学成绩  语文成绩  英语成绩
0    35    34    34
1    89    78    98

2 求分位数

分位数是比中位数更加详细的基于位置的指标,分位数主要有四分之一分位数,二分之一分位数(就是中位数)、四分之三分位数

2.1 求取不同分位的分位数

2.1.1 四分之一分位数

import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.quantile(0.25))

result:

数学成绩    35.0
语文成绩    46.0
英语成绩    45.0
Name: 0.25, dtype: float64

2.1.2 四分之三分位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.quantile(0.75))

result:

数学成绩    89.0
语文成绩    78.0
英语成绩    83.0
Name: 0.75, dtype: float64

2.2对全表进行操作

2.2.1对每一列求分位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.quantile(0.25))

result:

数学成绩    35.0
语文成绩    46.0
英语成绩    45.0
Name: 0.25, dtype: float64

2.2.2 对每一行求分位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.quantile(0.25, axis=1))

result:

0    83.5
1    34.0
2    34.0
3    56.5
4    55.5
5    86.0
6    64.0
7    40.0
8    56.5
Name: 0.25, dtype: float64

2.3 对单独的一行或者一列进行操作

2.3.1 对某一列求分位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['数学成绩'].quantile(0.25))

result:

35.0

2.3.2 对某一行求分位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].quantile(0.25))

result:

数学成绩    89.0
语文成绩    78.0
英语成绩    98.0
Name: 0.25, dtype: float64

2.4 对多行或者多列进行操作

2.4.1 对多列求分位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['数学成绩', "语文成绩"]].quantile(0.25))

result:

数学成绩    35.0
语文成绩    46.0
Name: 0.25, dtype: float64

2.4.2 对多行求分位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].quantile(0.25))

result:

数学成绩    48.5
语文成绩    45.0
英语成绩    50.0
Name: 0.25, dtype: float64

附:pandas 和 numpy计算分位数的区别

pandas 和 numpy中都有计算分位数的方法,pandas中是quantile,numpy中是percentile

两个方法其实没什么区别,用法上稍微不同,quantile的优点是与pandas中的groupby结合使用,可以分组之后取每个组的某分位数

quantile代码:

import pandas as pd
import numpy as np
data = pd.read_csv('order_rank_p_0409.txt',sep='\t')
#将data按id_1 和 id_2 分组
grouped=data.groupby(['id_1','id_2'])
#用quantile计算第40%的分位数
grouped['gmv'].quantile(0.4)
#用to_csv生成文件
x.to_csv('order_ran_re.txt',sep= '\t')

percentile代码:

import pandas as pd
import numpy as np
data = pd.read_csv('order_rank_p_0409.txt',sep='\t')
a = array(data['gmv'])
np.percentile(a,0.4)

两段代码,两种方法计算的结果是一样的

总结

到此这篇关于Python pandas系列之众数和分位数的文章就介绍到这了,更多相关pandas众数和分位数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python pandas系列之众数和分位数

    目录 准备 1.求众数 1.1对全表进行操作 1.1.1求取每列的众数 1.1.2 求取每行的众数 1.2 对单独的一行或者一列进行操作 1.2.1 求取单独某一列的众数 1.2.2 求取单独某一行的众数 1.3 对多行或者多列进行操作 1.3.1 求取多列的众数 1.3.2 求取多行的众数 2 求分位数 2.1 求取不同分位的分位数 2.1.1 四分之一分位数 2.1.2 四分之三分位数 2.2对全表进行操作 2.2.1对每一列求分位数 2.2.2 对每一行求分位数 2.3 对单独的一行或者一

  • Python pandas入门系列之众数和分位数

    目录 准备 1.求众数 1.1对全表进行操作 1.1.1求取每列的众数 1.1.2 求取每行的众数 1.2 对单独的一行或者一列进行操作 1.2.1 求取单独某一列的众数 1.2.2 求取单独某一行的众数 1.3 对多行或者多列进行操作 1.3.1 求取多列的众数 1.3.2 求取多行的众数 2 求分位数 2.1 求取不同分位的分位数 2.1.1 四分之一分位数 2.1.2 四分之三分位数 2.2对全表进行操作 2.2.1对每一列求分位数 2.2.2 对每一行求分位数 2.3 对单独的一行或者一

  • Python Pandas数据处理高频操作详解

    目录 引入依赖 算法相关依赖 获取数据 生成df 重命名列 增加列 缺失值处理 独热编码 替换值 删除列 数据筛选 差值计算 数据修改 时间格式转换 设置索引列 折线图 散点图 柱状图 热力图 66个最常用的pandas数据分析函数 从各种不同的来源和格式导入数据 导出数据 创建测试对象 查看.检查数据 数据选取 数据清理 筛选,排序和分组依据 数据合并 数据统计 16个函数,用于数据清洗 1.cat函数 2.contains 3.startswith/endswith 4.count 5.ge

  • python pandas dataframe 按列或者按行合并的方法

    concat 与其说是连接,更准确的说是拼接.就是把两个表直接合在一起.于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis . 函数的具体参数是: concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False) objs 是需要拼接的对象集合,一般为列表或者字典 axis=0 是

  • Python pandas常用函数详解

    本文研究的主要是pandas常用函数,具体介绍如下. 1 import语句 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import re 2 文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', 'C'...] 自定义列名 index_col='

  • python pandas移动窗口函数rolling的用法

    超级好用的移动窗口函数 最近经常使用移动窗口函数,觉得很方便,功能强大,代码简单,故将pandas中的移动窗口函数都做介绍.它都是以rolling打头的函数,后接具体的函数,来显示该移动窗口函数的功能. rolling_count 计算各个窗口中非NA观测值的数量 函数 pandas.rolling_count(arg, window, freq=None, center=False, how=None) arg : DataFrame 或 numpy的ndarray 数组格式 window :

  • Python Pandas知识点之缺失值处理详解

    前言 数据处理过程中,经常会遇到数据有缺失值的情况,本文介绍如何用Pandas处理数据中的缺失值. 一.什么是缺失值 对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值. 1. Pandas中的空值有三个:np.nan (Not a Number) . None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull(),isna()进行判断. isnull()和notnull()的结果互为取反,isn

  • Python Pandas常用函数方法总结

    初衷 NumPy.Pandas.Matplotlib.SciPy 等可以说是最最最常用的 Python 库了.我们在使用 Python 库的时候,通常会遇到两种情况.以 Pandas 举例. 我想对 Pandas 数据结构的数据实现某种操作,但是我不知道或者说在我的印象里似乎已经不记得是否有这样的函数方法,如果有,又该用哪个方法呢? 我想实现某种数据操作,我记得我用过或者见过某个函数可以实现这个功能,但是我死活想不起来那个函数叫啥了.或者,我想起来了哪个函数可以实现这个功能,但是我想知道是否有更

  • Python Pandas删除替换并提取其中的缺失值NaN(dropna,fillna,isnull)

    目录 前言 Pandas中缺少值NaN的介绍 将缺失值作为Pandas中的缺少值NaN 缺少值NaN的删除方法 删除所有值均缺失的行/列 删除至少包含一个缺失值的行/列 根据不缺少值的元素数量删除行/列 删除特定行/列中缺少值的列/行 pandas.Series 替换(填充)缺失值 用通用值统一替换 为每列替换不同的值 用每列的平均值,中位数,众数等替换 替换为上一个或下一个值 指定连续更换的最大数量 pandas.Series 提取缺失值 提取特定行/列中缺少值的列/行 提取至少包含一个缺失值

  • Python Pandas中缺失值NaN的判断,删除及替换

    目录 前言 1. 检查缺失值NaN 2. Pandas中NaN的类型 3. NaN的删除 dropna() 3.1 删除所有值均缺失的行/列 3.2 删除至少包含一个缺失值的行/列 3.3 根据不缺少值的元素数量删除行/列 3.4 删除特定行/列中缺少值的列/行 4. 缺失值NaN的替换(填充) fillna() 4.1 用通用值统一替换 4.2 为每列替换不同的值 4.3 用每列的平均值,中位数,众数等替换 4.4 替换为上一个或下一个值 总结 前言 当使用pandas读取csv文件时,如果元

随机推荐