C++实现LeetCode(162.求数组的局部峰值)

[LeetCode] 162.Find Peak Element 求数组的局部峰值

A peak element is an element that is greater than its neighbors.

Given an input array nums, where nums[i] ≠ nums[i+1], find a peak element and return its index.

The array may contain multiple peaks, in that case return the index to any one of the peaks is fine.

You may imagine that nums[-1] = nums[n] = -∞.

Example 1:

Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.

Example 2:

Input: nums = [1,2,1,3,5,6,4]
Output: 1 or 5
Explanation: Your function can return either index number 1 where the peak element is 2,
or index number 5 where the peak element is 6.

Note:

Your solution should be in logarithmic complexity.

这道题是求数组的一个峰值,如果这里用遍历整个数组找最大值肯定会出现Time Limit Exceeded,但题目中说了这个峰值可以是局部的最大值,所以我们只需要找到第一个局部峰值就可以了。所谓峰值就是比周围两个数字都大的数字,那么只需要跟周围两个数字比较就可以了。既然要跟左右的数字比较,就得考虑越界的问题,题目中给了nums[-1] = nums[n] = -∞,那么我们其实可以把这两个整型最小值直接加入到数组中,然后从第二个数字遍历到倒数第二个数字,这样就不会存在越界的可能了。由于题目中说了峰值一定存在,那么有一个很重要的corner case我们要注意,就是当原数组中只有一个数字,且是整型最小值的时候,我们如果还要首尾垫数字,就会形成一条水平线,从而没有峰值了,所以我们对于数组中只有一个数字的情况在开头直接判断一下即可,参见代码如下:

C++ 解法一:

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        if (nums.size() == 1) return 0;
        nums.insert(nums.begin(), INT_MIN);
        nums.push_back(INT_MIN);
        for (int i = 1; i < (int)nums.size() - 1; ++i) {
            if (nums[i] > nums[i - 1] && nums[i] > nums[i + 1]) return i - 1;
        }
        return -1;
    }
};

Java 解法一:

class Solution {
    public int findPeakElement(int[] nums) {
        if (nums.length == 1) return 0;
        int[] newNums = new int[nums.length + 2];
        System.arraycopy(nums, 0, newNums, 1, nums.length);
        newNums[0] = Integer.MIN_VALUE;
        newNums[newNums.length - 1] = Integer.MIN_VALUE;
        for (int i = 1; i < newNums.length - 1; ++i) {
            if (newNums[i] > newNums[i - 1] && newNums[i] > newNums[i + 1]) return i - 1;
        }
        return -1;
    }
}

我们可以对上面的线性扫描的方法进行一些优化,可以省去首尾垫值的步骤。由于题目中说明了局部峰值一定存在,那么实际上可以从第二个数字开始往后遍历,如果第二个数字比第一个数字小,说明此时第一个数字就是一个局部峰值;否则就往后继续遍历,现在是个递增趋势,如果此时某个数字小于前面那个数字,说明前面数字就是一个局部峰值,返回位置即可。如果循环结束了,说明原数组是个递增数组,返回最后一个位置即可,参见代码如下:

C++ 解法二:

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        for (int i = 1; i < nums.size(); ++i) {
            if (nums[i] < nums[i - 1]) return i - 1;
        }
        return nums.size() - 1;
    }
};

Java 解法二:

public class Solution {
    public int findPeakElement(int[] nums) {
        for (int i = 1; i < nums.length; ++i) {
            if (nums[i] < nums[i - 1]) return i - 1;
        }
        return nums.length - 1;
    }
}

由于题目中提示了要用对数级的时间复杂度,那么我们就要考虑使用类似于二分查找法来缩短时间,由于只是需要找到任意一个峰值,那么我们在确定二分查找折半后中间那个元素后,和紧跟的那个元素比较下大小,如果大于,则说明峰值在前面,如果小于则在后面。这样就可以找到一个峰值了,代码如下:

C++ 解法三:

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        int left = 0, right = nums.size() - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < nums[mid + 1]) left = mid + 1;
            else right = mid;
        }
        return right;
    }
};

Java 解法三:

public class Solution {
    public int findPeakElement(int[] nums) {
        int left = 0, right = nums.length - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < nums[mid + 1]) left = mid + 1;
            else right = mid;
        }
        return right;
    }
}

类似题目:

Peak Index in a Mountain Array

参考资料:

https://leetcode.com/problems/find-peak-element

https://leetcode.com/problems/find-peak-element/discuss/50232/find-the-maximum-by-binary-search-recursion-and-iteration

到此这篇关于C++实现LeetCode(162.求数组的局部峰值)的文章就介绍到这了,更多相关C++实现求数组的局部峰值内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(160.求两个链表的交点)

    [LeetCode] 160.Intersection of Two Linked Lists 求两个链表的交点 Write a program to find the node at which the intersection of two singly linked lists begins. For example, the following two linked lists: A:          a1 → a2 c1 → c2 → c3             B:     b1

  • C++实现LeetCode(161.一个编辑距离)

    [LeetCode] 161. One Edit Distance 一个编辑距离 Given two strings s and t, determine if they are both one edit distance apart. Note:  There are 3 possiblities to satisify one edit distance apart: Insert a character into s to get t Delete a character from s 

  • C++实现LeetCode(904.水果装入果篮)

    [LeetCode] 904. Fruit Into Baskets 水果装入果篮 In a row of trees, the `i`-th tree produces fruit with type `tree[i]`. You start at any tree of your choice, then repeatedly perform the following steps: Add one piece of fruit from this tree to your baskets.

  • C++实现LeetCode(163.缺失区间)

    [LeetCode] 163. Missing Ranges 缺失区间 Given a sorted integer array nums, where the range of elements are in the inclusive range [lower, upper], return its missing ranges. Example: Input: nums = [0, 1, 3, 50, 75], lower = 0 and upper = 99, Output: ["2&q

  • C++实现LeetCode(157.用Read4来读取N个字符)

    [LeetCode] 157. Read N Characters Given Read4 用Read4来读取N个字符 Given a file and assume that you can only read the file using a given method read4, implement a method to read n characters. Method read4: The API read4 reads 4 consecutive characters from t

  • C++实现LeetCode(159.最多有两个不同字符的最长子串)

    [LeetCode] 159. Longest Substring with At Most Two Distinct Characters 最多有两个不同字符的最长子串 Given a string s , find the length of the longest substring t  that contains at most 2 distinct characters. Example 1: Input: "eceba" Output: 3 Explanation: ti

  • C++实现LeetCode(158.用Read4来读取N个字符之二 - 多次调用)

    [LeetCode] 158. Read N Characters Given Read4 II - Call multiple times 用Read4来读取N个字符之二 - 多次调用 Given a file and assume that you can only read the file using a given method read4, implement a method read to read n characters. Your method read may be ca

  • C++实现LeetCode(228.总结区间)

    [LeetCode] 228.Summary Ranges 总结区间 Given a sorted integer array without duplicates, return the summary of its ranges. Example 1: Input:  [0,1,2,4,5,7] Output: ["0->2","4->5","7"] Explanation: 0,1,2 form a continuous ran

  • C++实现LeetCode(162.求数组的局部峰值)

    [LeetCode] 162.Find Peak Element 求数组的局部峰值 A peak element is an element that is greater than its neighbors. Given an input array nums, where nums[i] ≠ nums[i+1], find a peak element and return its index. The array may contain multiple peaks, in that c

  • python分治法求二维数组局部峰值方法

    题目的意思大致是在一个n*m的二维数组中,找到一个局部峰值.峰值要求大于相邻的四个元素(数组边界以外视为负无穷),比如最后我们找到峰值A[j][i],则有A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1].返回该峰值的坐标和值. 当然,最简单直接的方法就是遍历所有数组元素,判断是否为峰值,时间复杂度为O(n^2

  • Python 求数组局部最大值的实例

    求数组局部最大值 给定一个无重复元素的数组A[0-N-1],求找到一个该数组的局部最大值.规定:在数组边界外的值无穷小.即:A[0]>A[-1],A[N-1] >A[N]. 显然,遍历一遍可以找到全局最大值,而全局最大值显然是局部最大值. 可否有更快的办法? 算法描述 使用索引left.right分别指向数组首尾. 求中点 mid = ( left + right ) / 2 A[mid]>A[mid+1],丢弃后半段:right=mid A[mid+1]>A[mid],丢弃前半段

  • C++实现LeetCode(152.求最大子数组乘积)

    [LeetCode] 152. Maximum Product Subarray 求最大子数组乘积 Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has

  • C++实现LeetCode(164.求最大间距)

    [LeetCode] 164. Maximum Gap 求最大间距 Given an unsorted array, find the maximum difference between the successive elements in its sorted form. Return 0 if the array contains less than 2 elements. Example 1: Input: [3,6,9,1] Output: 3 Explanation: The sor

  • C++实现LeetCode( 69.求平方根)

    [LeetCode] 69. Sqrt(x) 求平方根 Implement int sqrt(int x). Compute and return the square root of x, where x is guaranteed to be a non-negative integer. Since the return type is an integer, the decimal digits are truncated and only the integer part of the

  • C++实现LeetCode(187.求重复的DNA序列)

    [LeetCode] 187. Repeated DNA Sequences 求重复的DNA序列 All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA. Wr

  • C++实现LeetCode(124.求二叉树的最大路径和)

    [LeetCode] 124. Binary Tree Maximum Path Sum 求二叉树的最大路径和 Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child conn

  • C++实现LeetCode(128.求最长连续序列)

    [LeetCode] 128.Longest Consecutive Sequence 求最长连续序列 Given an unsorted array of integers, find the length of the longest consecutive elements sequence. Your algorithm should run in O(n) complexity. Example: Input: [100, 4, 200, 1, 3, 2] Output: 4 Expl

  • C++实现LeetCode(169.求大多数)

    [LeetCode] 169. Majority Element 求大多数 Given an array nums of size n, return the majority element. The majority element is the element that appears more than ⌊n / 2⌋ times. You may assume that the majority element always exists in the array. Example 1

随机推荐