python用pyecharts画地图实例介绍

版本
pyecharts 分为 v0.5.X 和 v1 两个大版本,v0.5.X 和 v1 间不兼容,v1 是一个全新的版本

v0.5.X支持 Python2.7,3.4+
v1仅支持 Python3.6+

本文使用的是v1
详见官方文档

数据来源
只是学习方法,数据来源于网络查找

中国地图

from pyecharts.charts import Map
import pyecharts.options as opts
import os

# 中国地图
province_distribution = {'河南': 45, '北京': 97, '河北': 21, '辽宁': 12, '江西': 6, '上海': 20, '安徽': 10, '江苏': 16,
                         '湖南': 9, '浙江': 1, '海南': 2, '广东': 22, '湖北': 8, '黑龙江': 11, '澳门': 1, '陕西': 11, '四川': 7,
                         '内蒙古': 3, '重庆': 3, '云南': 6, '贵州': 2, '吉林': 3, '山西': 12, '山东': 11, '福建': 4, '青海': 1}
province_keys = list(province_distribution.keys())
province_values = list(province_distribution.values())

map_1 = Map()
map_1.add("销售量", [list(z) for z in zip(province_keys, province_values)], "china")
map_1.set_global_opts(title_opts=opts.TitleOpts(title="销售情况"))
map_1.render("中国地图.html")

os.system("中国地图.html")

世界地图

from pyecharts.charts import Map
import pyecharts.options as opts
import os

# 世界地图

# 基础数据
value = list([95.1, 23.2, 43.3, 66.4, 88.5])
attr = list([])
world_distribution = {"China": 95.1, "Canada": 23.2, "Brazil": 43.3, "Russia": 66.4, "United States": 88.5}
province_keys = list(world_distribution.keys())
province_values = list(world_distribution.values())

map_2 = Map()
map_2.add("世界地图", [list(z) for z in zip(province_keys, province_values)], "world")
map_2.set_global_opts(title_opts=opts.TitleOpts(title="世界地图示例"))
map_2.render("世界地图.html")

# 打开html
os.system("世界地图.html")

到此这篇关于python用pyecharts画地图实例介绍的文章就介绍到这了,更多相关python pyecharts画地图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python使用pyecharts库画地图数据可视化的实现

    python使用pyecharts库画地图数据可视化导库中国地图代码结果世界地图代码结果省级地图代码结果地级市地图代码结果 导库 from pyecharts import options as opts from pyecharts.charts import Map 中国地图 代码 data = [('湖北', 9074),('浙江', 661),('广东', 632),('河南', 493),('湖南', 463), ('安徽', 340),('江西', 333),('重庆', 275),

  • python用pyecharts实现地图数据可视化

    有的时候,我们需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较.但直方图在视觉上并不能很好突出地区间的差异,因此考虑地理可视化,通过地图上位置(地理位置)和颜色(颜色深浅代表数值差异)两个元素加以体现.在本文案例中,基于第三方库pyecharts,对中国各省2010-2019年的GDP进行绘制. 我们先来看看最终效果: 关于绘图数据 基于时间和截面两个维度,可把数据分为截面数据.时间序列及面板数据.在本文案例中,某一年各省的GDP属于截面数据,多年各省的GDP属于面板数据.因此,

  • python实现Pyecharts实现动态地图(Map、Geo)

    一些经常画图的开发人员大概都用过echart,不过小白用Python比较多,学习了python下的Pyecharts,发现这个包真的很强大.下面是小白对动态地图的实践案例: 假如有这样一组数据,全国每个城市的酒店数(虚拟),那么如何在地图上展示呢? 1.Python需要安装Pycharts 当安装完成后需要添加地图包: 安装pyecharts后还需要根据需要安装城市.省份等地图包,下面是对包的整理,大家可以根据需要下载. pip install pyecharts pip install ech

  • Python pyecharts实现绘制中国地图的实例详解

    目录 实例演示 1.pyecharts 1.9.1 版本安装与数据准备 2.添加数据项,默认中国地图显示 常用配置项及参数解析 1.设置是否默认选中 2.设置地图颜色类型是否分段显示 3.缩放平移配置 4.启用和关闭图形标记 5.关闭标签名称显示 6.颜色设置:标签颜色.区域颜色.边框颜色 实例演示 先给大家看下效果图哈. 1.pyecharts 1.9.1 版本安装与数据准备 首先需要安装 pyecharts 库,直接 pip install pyecharts 就好了. 新版本的话不需要单独

  • python用pyecharts画地图实例介绍

    版本pyecharts 分为 v0.5.X 和 v1 两个大版本,v0.5.X 和 v1 间不兼容,v1 是一个全新的版本 v0.5.X支持 Python2.7,3.4+v1仅支持 Python3.6+ 本文使用的是v1详见官方文档 数据来源只是学习方法,数据来源于网络查找 中国地图 from pyecharts.charts import Map import pyecharts.options as opts import os # 中国地图 province_distribution =

  • python用pyecharts画矩形树图实例

    目录 一.概念介绍 二.数据展示 三.数据导入 四.图像绘制 五.树形结构 总结 一.概念介绍 矩形树图(Treemap),即矩形式树状结构图,利用矩形的面积表示数值的大小,颜色用于类别区分,常用于呈现多类别的一维数值比较,易读性强:基于树状的功能,在结构图中可以同时呈现数据层次的信息. 示例如下: · 对比常见的柱状图和条形图,矩形树图弥补了以下三个缺点: 1.当我们的数据是多类别且每个类别只有一个数值时,我们用柱状图会浪费很多的空间,而且显得单调. 2.当数据间差异较大(235 vs 18)

  • 使用python 的matplotlib 画轨道实例

    如下所示: import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches from scipy import stats fig = plt.figure() ax = fig.add_subplot(111, xlim=(0, 10), ylim=(-4, 4)) sx=0;sy=0;r=1.5 ; circle = mpatches.Circle((sx,sy),r,ec='b

  • 用python实现词云效果实例介绍

    目录 什么是词云 一.特效预览 二.程序原理 三.程序源码 总结 什么是词云 词云其实就是就是对网络文本中出现频率较高的〝关键词〞予以视觉上的突出,形成〝关键词云层〞或〝关键词渲染〞从而过滤掉大量的文本信息 词云也是数据可视化的一种形式.给出一段文本,根据关键词的出现频率而生成的一幅图像,人们只要扫一眼就能够明白其文章主旨. 一.特效预览 词云图 二.程序原理 从给出的文本中,进行分词处理,然后将每个词出现的的频率进行统计从给出的背景图片上,读出图片信息将文本按照出现的频率进行画图,出现频率越高

  • 详解python 利用echarts画地图(热力图)(世界地图,省市地图,区县地图)

    首先安装对应的python模块 $ pip install pyecharts==0.5.10 $ pip install echarts-countries-pypkg $ pip install echarts-china-provinces-pypkg $ pip install echarts-china-cities-pypkg $ pip install echarts-china-counties-pypkg 世界地图 from pyecharts import Map value

  • Python使用pyecharts绘制世界地图,省级地图,城市地图实例详解

    目录 1.世界地图绘制演示 ① 世界地图数据准备 ② 世界地图生成 2.省份(河北省)地图绘制演示 ① 省份地图数据准备 ② 省份地图生成 3.城市(承德市)地图绘制演示 ① 城市地图数据准备 ② 城市地图生成 1.世界地图绘制演示 先给大家看下效果图哈. ① 世界地图数据准备 地图数据如下: 因为是世界地图,所以对标的国家,我设置了 2 组,里面的数据是随机生成的. # -*- coding:utf-8 -*- # 2022-2-14 # 作者:小蓝枣 # pyecharts地图 # 需要引用

  • Python学习之用pygal画世界地图实例

    有关pygal的介绍和安装,大家可以参阅<pip和pygal的安装实例教程>,然后利用pygal实现画世界地图.代码如下: #coding=utf-8 import json import pygal.maps.world #Pygal样式保存在模块style中,包括RotateStyle调整颜色和LightColorizedStyle加亮颜色 #也可以写成from pygal.style import LightColorizedStyle, RotateStyle import pygal

  • Python简单实现图片转字符画的实例项目

    1. 原理 利用 PIL 库来获取图片并修改大小, 利用灰度值转换公式把每一个像素的 RGB 值转为灰度值 gray = int(0.2126*r+0.7152*g+0.0722*b) 再从字符集里获取对应的字符 asciis = list('M%$@#&WNBRwm8S5A4E3KXFPH69nsxeazgpqbdoctfhkyvuGZYVTUCI2QOD0L7Jjl1ri!^{}[]()/|;:*<>_~-,. ') 最后将字符连接起来并保存就完成了 2. 开始制作 2.1 导入所

随机推荐