python爬虫框架feapder的使用简介

目录
  • 1. 前言
  • 2. 介绍及安装
  • 3. 实战一下
    • 3-1  创建爬虫项目
    • 3-2  创建爬虫 AirSpider
    • 3-3  配置数据库、创建数据表、创建映射 Item
    • 3-4  编写爬虫及数据解析
    • 3-5  数据入库
  • 4. 最后

1. 前言

大家好,我是安果!

众所周知,Python 最流行的爬虫框架是 Scrapy,它主要用于爬取网站结构性数据

今天推荐一款更加简单、轻量级,且功能强大的爬虫框架:feapder

项目地址:

https://github.com/Boris-code/feapder

2. 介绍及安装

和 Scrapy 类似,feapder 支持轻量级爬虫、分布式爬虫、批次爬虫、爬虫报警机制等功能

内置的 3 种爬虫如下:

  • AirSpider

轻量级爬虫,适合简单场景、数据量少的爬虫

  • Spider

分布式爬虫,基于 Redis,适用于海量数据,并且支持断点续爬、自动数据入库等功能

  • BatchSpider

分布式批次爬虫,主要用于需要周期性采集的爬虫

在实战之前,我们在虚拟环境下安装对应的依赖库

# 安装依赖库
pip3 install feapder

3. 实战一下

我们以最简单的 AirSpider 来爬取一些简单的数据

目标网站:aHR0cHM6Ly90b3BodWIudG9kYXkvIA==

详细实现步骤如下( 5 步)

3-1  创建爬虫项目

首先,我们使用「 feapder create -p 」命令创建一个爬虫项目

# 创建一个爬虫项目
feapder create -p tophub_demo

3-2  创建爬虫 AirSpider

命令行进入到 spiders 文件夹目录下,使用「 feapder create -s 」命令创建一个爬虫

cd spiders

# 创建一个轻量级爬虫
feapder create -s tophub_spider 1

其中

  • 1 为默认,表示创建一个轻量级爬虫 AirSpider
  • 2 代表创建一个分布式爬虫 Spider
  • 3 代表创建一个分布式批次爬虫 BatchSpider

3-3  配置数据库、创建数据表、创建映射 Item

以 Mysql 为例,首先我们在数据库中创建一张数据表

# 创建一张数据表
create table topic
(
    id         int auto_increment
        primary key,
    title      varchar(100)  null comment '文章标题',
    auth       varchar(20)   null comment '作者',
    like_count     int default 0 null comment '喜欢数',
    collection int default 0 null comment '收藏数',
    comment    int default 0 null comment '评论数'
);

然后,打开项目根目录下的 settings.py 文件,配置数据库连接信息

# settings.py

MYSQL_IP = "localhost"
MYSQL_PORT = 3306
MYSQL_DB = "xag"
MYSQL_USER_NAME = "root"
MYSQL_USER_PASS = "root"

最后,创建映射 Item( 可选 )

进入到 items 文件夹,使用「 feapder create -i 」命令创建一个文件映射到数据库

PS:由于 AirSpider 不支持数据自动入库,所以这步不是必须

3-4  编写爬虫及数据解析

第一步,首先使「 MysqlDB 」初始化数据库

from feapder.db.mysqldb import MysqlDB

class TophubSpider(feapder.AirSpider):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.db = MysqlDB()

第二步,在 start_requests 方法中,指定爬取主链接地址,使用关键字「download_midware 」配置随机 UA

import feapder
from fake_useragent import UserAgent

def start_requests(self):
    yield feapder.Request("https://tophub.today/", download_midware=self.download_midware)

def download_midware(self, request):
    # 随机UA
    # 依赖:pip3 install fake_useragent
    ua = UserAgent().random
    request.headers = {'User-Agent': ua}
    return request

第三步,爬取首页标题、链接地址

使用 feapder 内置方法 xpath 去解析数据即可

def parse(self, request, response):
    # print(response.text)
    card_elements = response.xpath('//div[@class="cc-cd"]')

    # 过滤出对应的卡片元素【什么值得买】
    buy_good_element = [card_element for card_element in card_elements if
                        card_element.xpath('.//div[@class="cc-cd-is"]//span/text()').extract_first() == '什么值得买'][0]

    # 获取内部文章标题及地址
    a_elements = buy_good_element.xpath('.//div[@class="cc-cd-cb nano"]//a')

    for a_element in a_elements:
        # 标题和链接
        title = a_element.xpath('.//span[@class="t"]/text()').extract_first()
        href = a_element.xpath('.//@href').extract_first()

        # 再次下发新任务,并带上文章标题
        yield feapder.Request(href, download_midware=self.download_midware, callback=self.parser_detail_page,
                              title=title)

第四步,爬取详情页面数据

上一步下发新的任务,通过关键字「 callback 」指定回调函数,最后在 parser_detail_page 中对详情页面进行数据解析

def parser_detail_page(self, request, response):
    """
    解析文章详情数据
    :param request:
    :param response:
    :return:
    """
    title = request.title

    url = request.url

    # 解析文章详情页面,获取点赞、收藏、评论数目及作者名称
    author = response.xpath('//a[@class="author-title"]/text()').extract_first().strip()

    print("作者:", author, '文章标题:', title, "地址:", url)

    desc_elements = response.xpath('//span[@class="xilie"]/span')

    print("desc数目:", len(desc_elements))

    # 点赞
    like_count = int(re.findall('\d+', desc_elements[1].xpath('./text()').extract_first())[0])
    # 收藏
    collection_count = int(re.findall('\d+', desc_elements[2].xpath('./text()').extract_first())[0])
    # 评论
    comment_count = int(re.findall('\d+', desc_elements[3].xpath('./text()').extract_first())[0])

    print("点赞:", like_count, "收藏:", collection_count, "评论:", comment_count)

3-5  数据入库

使用上面实例化的数据库对象执行 SQL,将数据插入到数据库中即可

# 插入数据库
sql = "INSERT INTO topic(title,auth,like_count,collection,comment) values('%s','%s','%s','%d','%d')" % (
title, author, like_count, collection_count, comment_count)

# 执行
self.db.execute(sql)

4. 最后

本篇文章通过一个简单的实例,聊到了 feapder 中最简单的爬虫 AirSpider

关于 feapder 高级功能的使用,后面我将会通过一系列实例进行详细说明

源码地址:https://github.com/xingag/spider_python/tree/master/feapder

以上就是python爬虫框架feapder的使用简介的详细内容,更多关于python爬虫框架feapde的资料请关注我们其它相关文章!

(0)

相关推荐

  • 上手简单,功能强大的Python爬虫框架——feapder

    简介 feapder 是一款上手简单,功能强大的Python爬虫框架,使用方式类似scrapy,方便由scrapy框架切换过来,框架内置3种爬虫: AirSpider爬虫比较轻量,学习成本低.面对一些数据量较少,无需断点续爬,无需分布式采集的需求,可采用此爬虫. Spider是一款基于redis的分布式爬虫,适用于海量数据采集,支持断点续爬.爬虫报警.数据自动入库等功能 BatchSpider是一款分布式批次爬虫,对于需要周期性采集的数据,优先考虑使用本爬虫. feapder除了支持断点续爬.数

  • Python爬虫框架之Scrapy中Spider的用法

    Spider类定义了如何爬取某个(或某些)网站.包括了爬取的动作(例如:是否跟进链接)以及如何从网页的内容中提取结构化数据(爬取item).换句话说,Spider就是您定义爬取的动作及分析某个网页(或者是有些网页)的地方. 对spider来说,爬取的循环类似下文: 1.以初始的URL初始化Request,并设置回调函数.当该request下载完毕并返回时,将生成response,并作为参数传给该回调函数.spider中初始的request是通过调用start_requests()来获取的.sta

  • Python之Scrapy爬虫框架安装及简单使用详解

    题记:早已听闻python爬虫框架的大名.近些天学习了下其中的Scrapy爬虫框架,将自己理解的跟大家分享.有表述不当之处,望大神们斧正. 一.初窥Scrapy Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 其最初是为了页面抓取(更确切来说,网络抓取)所设计的, 也可以应用在获取API所返回的数据(例如Amazon Associates Web Services) 或者通用的网络爬虫. 本文档将通过介绍Sc

  • python3 Scrapy爬虫框架ip代理配置的方法

    什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能(高性能异步下载,队列,分布式,解析,持久化等)的具有很强通用性的项目模板.对于框架的学习,重点是要学习其框架的特性.各个功能的用法即可. 一.背景 在做爬虫项目的过程中遇到ip代理的问题,网上搜了一些,要么是用阿里云的ip代理,要么是搜一些网上现有的ip资源,然后配置在setting文件中.这两个方法都存在一些问题. 1.阿里云ip代理方法,网上大

  • python Scrapy爬虫框架的使用

    导读:如何使用scrapy框架实现爬虫的4步曲?什么是CrawSpider模板?如何设置下载中间件?如何实现Scrapyd远程部署和监控?想要了解更多,下面让我们来看一下如何具体实现吧! Scrapy安装(mac) pip install scrapy 注意:不要使用commandlinetools自带的python进行安装,不然可能报架构错误:用brew下载的python进行安装. Scrapy实现爬虫 新建爬虫 scrapy startproject demoSpider,demoSpide

  • 详解Python的爬虫框架 Scrapy

    网络爬虫,是在网上进行数据抓取的程序,使用它能够抓取特定网页的HTML数据.虽然我们利用一些库开发一个爬虫程序,但是使用框架可以大大提高效率,缩短开发时间.Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便. 一.概述 下图显示了Scrapy的大体架构,其中包含了它的主要组件及系统的数据处理流程(绿色箭头所示).下面就来一个个解释每个组件的作用及数据的处理过程(注:图片来自互联网). 二.组件 1.Scrapy Engine(Scrapy引擎) Scrapy引擎

  • 一文读懂python Scrapy爬虫框架

    Scrapy是什么? 先看官网上的说明,http://scrapy-chs.readthedocs.io/zh_CN/latest/intro/overview.html Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架.可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫. S

  • Python使用Scrapy爬虫框架全站爬取图片并保存本地的实现代码

    大家可以在Github上clone全部源码. Github:https://github.com/williamzxl/Scrapy_CrawlMeiziTu Scrapy官方文档:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html 基本上按照文档的流程走一遍就基本会用了. Step1: 在开始爬取之前,必须创建一个新的Scrapy项目. 进入打算存储代码的目录中,运行下列命令: scrapy startproject CrawlMe

  • 爬虫框架 Feapder 和 Scrapy 的对比分析

    目录 一.scrapy 分析 1. 解析函数或数据入库出错,不会重试,会造成一定的数据丢失 2. 运行方式,需借助命令行,不方便调试 3. 入库 pipeline,不能批量入库 二.scrapy-redis 分析 1. redis 中的任务可读性不好 2. 取任务时直接弹出,会造成任务丢失 3. 去重耗内存 三.feapder 分析 四.三种爬虫简介 1. AirSpider 2. Spider 3. BatchSpider 五.feapder 项目结构 1. feapder 部署 六.采集效率

  • Python爬虫框架-scrapy的使用

    Scrapy Scrapy是纯python实现的一个为了爬取网站数据.提取结构性数据而编写的应用框架. Scrapy使用了Twisted异步网络框架来处理网络通讯,可以加快我们的下载速度,并且包含了各种中间件接口,可以灵活的完成各种需求 1.安装 sudo pip3 install scrapy 2.认识scrapy框架 2.1 scrapy架构图 Scrapy Engine(引擎): 负责Spider.ItemPipeline.Downloader.Scheduler中间的通讯,信号.数据传递

  • Python爬虫框架Scrapy实例代码

    目标任务:爬取腾讯社招信息,需要爬取的内容为:职位名称,职位的详情链接,职位类别,招聘人数,工作地点,发布时间. 一.创建Scrapy项目 scrapy startproject Tencent 命令执行后,会创建一个Tencent文件夹,结构如下 二.编写item文件,根据需要爬取的内容定义爬取字段 # -*- coding: utf-8 -*- import scrapy class TencentItem(scrapy.Item): # 职位名 positionname = scrapy.

随机推荐