C语言数据结构之堆排序的优化算法

目录
  • 1.堆排序优化算法
    • 1.1建堆的时间复杂度
      • 1.1.1 向下调整建堆:O(N)
      • 1.1.2 向上调整建堆:O(N*logN)
    • 1.2堆排序的复杂度
      • 1.2.1原堆排序的时间复杂度
      • 1.2.2原堆排序的空间复杂度
    • 1.3堆排序优化算法的复杂度
      • 1.3.1 堆排序优化算法的时间复杂度
      • 1.3.2 堆排序优化算法的空间复杂度
    • 1.4堆排序实现逻辑
    • 1.5堆排序实现代码
    • 1.6演示结果
  • 总结

在浏览本篇博文的小伙伴可先浅看一下上篇堆和堆排序的思想:

戳这里可跳转上篇文~~

1.堆排序优化算法

要堆堆排序算法进行优化我们首先要明白之前我们所写的堆排序有什么可以优化的地方或者说哪里写的不够好?

void HeapSort(int* a, int size)
{
	//小堆
	HP hp;
	HeapInit(&hp);
	//O(N*logN)
	for (int i = 0; i < size; ++i)
	{
		HeapPush(&hp, a[i]);
	}
	size_t j = 0;
	//O(N*logN)
	while (!HeapEmpty(&hp))
	{
		a[j] = HeapTop(&hp);
		j++;
		HeapPop(&hp);
	}
	HeapDestory(&hp);
}

这是我们之前写的堆排序,我们能够发现,如果我们要实现堆排序的前提是我们要写一堆。那这想想都很麻烦,我们都知道排序算法那么多,我们何必选择这种算法呢?

其次我们再来分析一下建堆的时间复杂度:

1.1建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明 ( 时间复杂度本来看的就是近似值,多几个节点不影响最终结果) :

因为我们要进行优化建堆,在这里分析一下向下调整建堆和向上调整建堆的时间复杂度。

1.1.1 向下调整建堆:O(N)

过程分析如下:

因此向下调整建堆的时间复杂度为O(n)。

1.1.2 向上调整建堆:O(N*logN)

过程分析如下:

因此向上调整建堆的时间复杂度为O(N*logN)。

1.2堆排序的复杂度

1.2.1原堆排序的时间复杂度

我们来看原堆排序的代码中使用了向上调整建堆,因此原排序的时间复杂度为O(N*logN)

1.2.2原堆排序的空间复杂度

因为我们要建立一个堆,我们实现堆是使用数组实现,因此假设有要排序元素个数为N,空间复杂度为O(N)。

1.3堆排序优化算法的复杂度

堆排序的优化算法主要是对空间复杂度进行优化。由于我们之前建堆都要开辟新的数组,因此我们是否可以在原数组上直接建堆,无需再开辟新的空间建堆呢?答案当然是可以的。以下使用的正是在原数组上直接建堆。

1.3.1 堆排序优化算法的时间复杂度

由于使用堆排序,我们要利用堆的特点,每次取堆顶的元素。因此每次取完数据后都要对堆进行调整。再次我们有向上调整和向下调整两种算法,我们需要对这两种算法分别分析选出一个 更优的调整算法。

1.3.1.1向上调整--建堆 O(N*logN)

由于我们是对原数组之间建堆,因此我们如果要是用向上调整,在刚刚我们所分析的建堆的时间复杂度是O(N*logN)。

实现代码:

	向上调整--建堆  O(N*logN)
	int n = 1;
	while (n<size)
	{
		AdjustUp(a, n++);
	}

1.3.1.2向下调整-建堆 O(N)

由于向下调整的前提条件是左子树和右子树都已经是一个堆,但是一个数组并不能保证是一个堆,那么我们不能直接对数组使用向下调整。因此我们需要将节点的左子树右子树变成堆再进行向下调整。因此我们可以我们可以倒着来。

过程:

1、叶子节点不要调,因为一个节点可以看成堆。因此我们从倒数的第一个非叶子节点开始调整。如果找到倒数第一个非叶子节点。那就是用最后一个节点找他的父节点就是最后一个非叶子节点。

parent = (child-1)/2。我们用size计算:child = size -1。因此parent = (size-1-1)/2。我们一直向上找就可以将数组变成一个堆。因此向下调整建堆的复杂度为O(N)。分析如上:

	//向下调整--建堆  O(N)
	for (int i = (size - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, size, i);
	}

1.3.2 堆排序优化算法的空间复杂度

由于我们是在原数组上进行遍历因此没有开辟新的空间。因此空间复杂度为O(1)。

1.4堆排序实现逻辑

如果升序建小堆,最小的数已经在堆顶,剩下的数关系打乱,需要重新建堆,建堆最好也要O(N),再选出次小的,不断建堆选数,如果这样,还不如直接遍历选数!!因此升序要建大堆!!利用删除的思想来玩。

过程:

1、把第一个数和最后一个数交换,由于是大堆,堆顶的数据一定是最大的数据。和最后一个数交换后,最大的数据就到了最后一个。

2、再对前N-1个数进行向下调整建立新的大堆,次大的数放在了堆顶,我们再让堆顶的元素和最后一个元素交换(这个最后一个不是数组的最后一个,是堆中的最后一个,使用end进行控制)。

3、当end到0的时候,说明已经排完了。

	//升序要建大堆,
	size_t end = size - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}

1.5堆排序实现代码

void HeapSort(int* a, int size)
{
	//向下调整--建堆  O(N)
	for (int i = (size - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, size, i);
	}

	//如果升序建小堆,最小的数已经在堆顶,剩下的数关系打乱,需要重新建堆,建堆最好也要O(N)
	//再选出次小的,不断建堆选数,如果这样,还不如直接遍历选数!!

	//升序要建大堆,
	size_t end = size - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

int main()
{
	int a[] = { 4,2,1,3,5,7,9,8,6};
	HeapSort(a,sizeof(a)/sizeof(int));
	for (int i = 0; i < sizeof(a) / sizeof(int); ++i)
	{
		printf("%d ", a[i]);
	}

	return 0;
}

1.6演示结果

总结

到此这篇关于C语言数据结构之堆排序优化算法的文章就介绍到这了,更多相关C语言堆排序优化算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言数据结构中堆排序的分析总结

    目录 一.本章重点 二.堆 2.1堆的介绍(三点) 2.2向上调整 2.3向下调整 2.4建堆(两种方式) 三.堆排序 一.本章重点 堆 向上调整 向下调整 堆排序 二.堆 2.1堆的介绍(三点) 1.物理结构是数组 2.逻辑结构是完全二叉树 3.大堆:所有的父亲节点都大于等于孩子节点,小堆:所有的父亲节点都小于等于孩子节点. 2.2向上调整 概念:有一个小/大堆,在数组最后插入一个元素,通过向上调整,使得该堆还是小/大堆. 使用条件:数组前n-1个元素构成一个堆. 以大堆为例: 逻辑实现: 将

  • C语言八大排序之堆排序

    目录 前言 一.堆排序的概念 二.堆排序的实现 第一步:构建堆 第二步:排序 三.完整代码 四.证明建堆的时间复杂度 前言 本章我们来讲解八大排序之堆排序.2022,地球Online新赛季开始了!让我们一起努力内卷吧! 一.堆排序的概念 堆排序(Heapsort):利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种.通过堆来进行选择数据,需要注意的是 排升序要建大堆,排降序建小堆. 堆排序使用堆来选数,效率就高了很多. 时间复杂度: 空间复杂度: 稳定性:不稳定 二.堆排序的实

  • C语言对堆排序一个算法思路和实现代码

    算法思想简单描述: 堆排序是一种树形选择排序,是对直接选择排序的有效改进. 堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆.在这里只讨论满足前者条件的堆. 由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项.完全二叉树可以很直观地表示堆的结构.堆顶为根,其它为左子树.右子树. 初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的

  • C语言 数据结构堆排序顺序存储(升序)

    堆排序顺序存储(升序) 一: 完全二叉树的概念:前h-1层为满二叉树,最后一层连续缺失右结点! 二:首先堆是一棵全完二叉树: a:构建一个堆分为两步:⑴创建一棵完全二叉树      ⑵调整为一个堆 (标注:大根堆为升序,小根堆为降序) b:算法描述:①创建一棵完全二叉树 ②while(有双亲){ A:调整为大根堆: B:交换根和叶子结点: C:砍掉叶子结点: } c:时间复杂度为 O(nlogn)  ,空间复杂度为 O(1), 是不稳定排序! 代码实现: /*堆排序思想:[完全二叉树的定义:前

  • C语言实现基于最大堆和最小堆的堆排序算法示例

    堆定义 堆实际上是一棵完全二叉树,其任何一非叶节点满足性质: Key[i]<=key[2i+1]&&Key[i]<=key[2i+2](小顶堆)或者:Key[i]>=Key[2i+1]&&key>=key[2i+2](大顶堆) 即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字. 堆排序的思想 利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单. 最大堆:所有节点的子节点比其

  • C语言数据结构二叉树之堆的实现和堆排序详解

    目录 一.本章重点 二.堆 2.1堆的介绍 2.2堆的接口实现 三.堆排序 一.本章重点 堆的介绍 堆的接口实现 堆排序 二.堆 2.1堆的介绍 一般来说,堆在物理结构上是连续的数组结构,在逻辑结构上是一颗完全二叉树. 但要满足 每个父亲节点的值都得大于孩子节点的值,这样的堆称为大堆. 每个父亲节点的值都得小于孩子节点的值,这样的堆称为小堆. 那么以下就是一个小堆. 百度百科: 堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆. 若将和此次序列对应的一维数

  • C语言数据结构之堆排序详解

    目录 1.堆的概念及结构 2.堆的实现 2.1堆的向下调整算法 2.2堆的向上调整算法 2.3建堆(数组) 2.4堆排序 2.5堆排序的时间复杂度 1.堆的概念及结构 如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树(二叉树具体概念参见——二叉树详解)的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为小堆(或大

  • C语言实现各种排序算法实例代码(选择,冒泡,插入,归并,希尔,快排,堆排序,计数)

    目录 前言 选择排序 冒泡排序 插入排序 归并排序 希尔排序 快速排序 堆排序 计数排序 总结 前言 平时用惯了高级语言高级工具高级算法,难免对一些基础算法感到生疏.但最基础的排序算法中实则蕴含着相当丰富的优化思维,熟练运用可起到举一反三之功效. 选择排序 选择排序几乎是最无脑的一种排序算法,通过遍历一次数组,选出其中最大(小)的值放在新数组的第一位:再从数组中剩下的数里选出最大(小)的,放到第二位,依次类推. 算法步骤 设数组有n个元素,{ a 0 , a 1 , - , a n } 从数组第

  • C语言实现堆排序的简单实例

    本文通过一个C语言实现堆排序的简单实例,帮助大家抛开复杂的概念,更好的理解堆排序. 实例代码如下: void FindMaxInHeap(int arr[], const int size) { for (int j = size - 1; j > 0; --j) { int parent = j / 2; int child = j; if (j < size - 1 && arr[j] < arr[j+1]) { ++child; } if (arr[child] &

  • C语言数据结构之堆排序源代码

    本文实例为大家分享了C语言堆排序源代码,供大家参考,具体内容如下 1. 堆排序 堆排序的定义及思想可以参考百度百科: 用一句概括,堆排序就是一种改进的选择排序,改进的地方在于,每次做选择的时候,不单单把最大的数字选择出来,而且把排序过程中的一些操作进行了记录,这样在后续排序中可以利用,并且有分组的思想在里面,从而提高了排序效率,其效率为O(n*logn). 2. 源代码 堆排序中有两个核心的操作,一个是创建大顶堆(或者小顶堆,这里用的是大顶堆),再一个就是对堆进行调整.这里需要注意的是,并没有真

随机推荐