ReentrantReadWriteLock 读写锁分析总结

目录
  • 一、读写锁简介
  • 二、读写锁使用
    • ReadWriteLock 接口
    • 使用例子
  • 三、锁的降级
    • 锁降级的使用示例
  • 四、ReentranReadWriteLock 结构
    • 方法结构设计
    • 读写状态设计
  • 五、源码分析
    • 写锁的加锁
    • 写锁的释放
    • 读锁的获取
    • 读锁的释放

一、读写锁简介

现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁(读多写少)。在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源(读读可以并发);但是如果一个线程想去写这些共享资源,就不应该允许其他线程对该资源进行读和写操作了(读写,写读,写写互斥)。在读多于写的情况下,读写锁能够提供比排它锁更好的并发性和吞吐量。

针对这种场景,JAVA的并发包提供了读写锁 ReentrantReadWriteLock,它内部,维护了一对相关的锁,一个用于只读操作,称为读锁;一个用于写入操作,称为写锁,描述如下:线程进入读锁的前提条件:

  • 没有其他线程的写锁
  • 没有写请求或者有写请求,但调用线程和持有锁的线程是同一个。

线程进入写锁的前提条件:

  • 没有其他线程的读锁
  • 没有其他线程的写锁

而读写锁有以下三个重要的特性:

  • 公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平。
  • 可重入:读锁和写锁都支持线程重入。以读写线程为例:读线程获取读锁后,能够再次获取读锁。写线程在获取写锁之后能够再次获取写锁,同时也可以获取读锁。
  • 锁降级:遵循获取写锁、再获取读锁最后释放写锁的次序,写锁能够降级成为读锁。

看了上面的描述大家可能有点晕,我就举一个之前开发订单的例子,辅助大家理解。 我们的订单有一个主单和子单的概念:主单编码为 orderCode, 子单编码为 subOrderCode 对应关系是 1:N。 我在退款的时候,需要支持子单,主单退款。 子单退款,的维度是 subOrderCode 主单退款,的维度是 orderCode 可能出现并发的情况,我们可以对 orderCode 加一把读写锁

  • 如果是主单退款的情况,是不是子单退款就是互斥的
  • 如果是子单退款的情况,其实就可以并行的,但是子单是 subOrderCode维度,还需要加一个 subOrderCode 的互斥锁。

二、读写锁使用

如何同时存储读写锁,可以通过 state 的值进行存储,高 16 位表示读锁,低 16 位表示写锁。 比如: 0000 0000 0000 0000 (1<<16) 0000 0000 0000 0000 高 16 位不为0: 有读锁 c >>>16 低 16 位不为0: 有写锁 5

ReadWriteLock 接口

我们可以看到 ReentranReadWriteLock 有两把锁,一把读锁,一把写锁。

使用例子

缓存操作:

public class ReentrantReadWriteLockCacheTest {
    static Map<String, Object> map = new HashMap<String, Object>();
    static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    static Lock r = rwl.readLock();
    static Lock w = rwl.writeLock();
    // 获取一个key对应的value
    public static final Object get(String key) {
        r.lock();
        try {
            return map.get(key);
        } finally {
            r.unlock();
        }
    }

    // 设置key对应的value,并返回旧的value
    public static final Object put(String key, Object value) {
        w.lock();
        try {
            return map.put(key, value);
        } finally {
            w.unlock();
        }
    }

    // 清空所有的内容
    public static final void clear() {
        w.lock();
        try {
            map.clear();
        } finally {
            w.unlock();
        }
    }
}

上述示例中,Cache组合一个非线程安全的HashMap作为缓存的实现,同时使用读写锁的 读锁和写锁来保证Cache是线程安全的。在读操作get(String key)方法中,需要获取读锁,这 使得并发访问该方法时不会被阻塞。写操作put(String key,Object value)方法和clear()方法, 在更新 HashMap时必须提前获取写锁,当获取写锁后,其他线程对于读锁和写锁的获取均被 阻塞,而 只有写锁被释放之后,其他读写操作才能继续。Cache使用读写锁提升读操作的并发 性,也保证每次写操作对所有的读写操作的可见性,同时简化了编程方式。

三、锁的降级

锁降级指的是写锁降级成为读锁。如果当前线程拥有写锁,然后将其释放,最后再获取读锁,这种分段完成的过程不能称之为锁降级。锁降级是指把持住(当前拥有的)写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。锁降级可以帮助我们拿到当前线程修改后的结果而不被其他线程所破坏,防止更新丢失。

锁降级的使用示例

因为数据不常变化,所以多个线程可以并发地进行数据处理,当数据变更后,如果当前线程感知到数据变化,则进行数据的准备工作,同时其他处理线程被阻塞,直到当前线程完成数据的准备工作。

private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock readLock = rwl.readLock();
private final Lock writeLock = rwl.writeLock();
private volatile boolean update = false;
public void processData() {
    readLock.lock();
    if (!update) {
        // 必须先释放读锁
        readLock.unlock();
        // 锁降级从写锁获取到开始
        writeLock.lock();
        try {
            if (!update) {
                // TODO 准备数据的流程(略)
                update = true;
            }
            readLock.lock();
        } finally {
            writeLock.unlock();
        }
        // 锁降级完成,写锁降级为读锁
    }
    try {
        //TODO  使用数据的流程(略)
    } finally {
        readLock.unlock();
    }
}

注意事项:

  • 读锁不支持条件变量
  • 重入时不升级不支持:持有读锁的情况下,去获取写锁,会导致永久等待
  • 重入时支持降级:持有写锁的情况下可以去获取读锁

四、ReentranReadWriteLock 结构

方法结构设计

读写状态设计

五、源码分析

写锁的加锁

方法 tryAcquire 是写锁的加锁核心逻辑

protected final boolean tryAcquire(int acquires) {
    /*
     * Walkthrough:
     * 1. If read count nonzero or write count nonzero
     *    and owner is a different thread, fail.
     * 2. If count would saturate, fail. (This can only
     *    happen if count is already nonzero.)
     * 3. Otherwise, this thread is eligible for lock if
     *    it is either a reentrant acquire or
     *    queue policy allows it. If so, update state
     *    and set owner.
     */
    Thread current = Thread.currentThread();
    int c = getState();
    // 获取写锁状态
    int w = exclusiveCount(c);
    if (c != 0) {
        // (Note: if c != 0 and w == 0 then shared count != 0)
        if (w == 0 || current != getExclusiveOwnerThread())
            return false;
        if (w + exclusiveCount(acquires) > MAX_COUNT)
            throw new Error("Maximum lock count exceeded");
        // Reentrant acquire
        // 重入
        setState(c + acquires);
        return true;
    }
    // 获取写锁
    if (writerShouldBlock() ||
        !compareAndSetState(c, c + acquires))
        return false;
    // 设置写锁 owner
    setExclusiveOwnerThread(current);
    return true;
}

写锁的释放

protected final boolean tryRelease(int releases) {
    if (!isHeldExclusively())
        throw new IllegalMonitorStateException();
    int nextc = getState() - releases;
    boolean free = exclusiveCount(nextc) == 0;
    if (free)
        setExclusiveOwnerThread(null);
    setState(nextc);
    return free;
}

读锁的获取

protected final int tryAcquireShared(int unused) {
    /*
     * Walkthrough:
     * 1. If write lock held by another thread, fail.
     * 2. Otherwise, this thread is eligible for
     *    lock wrt state, so ask if it should block
     *    because of queue policy. If not, try
     *    to grant by CASing state and updating count.
     *    Note that step does not check for reentrant
     *    acquires, which is postponed to full version
     *    to avoid having to check hold count in
     *    the more typical non-reentrant case.
     * 3. If step 2 fails either because thread
     *    apparently not eligible or CAS fails or count
     *    saturated, chain to version with full retry loop.
     */
    Thread current = Thread.currentThread();
    int c = getState();
    if (exclusiveCount(c) != 0 &&
        getExclusiveOwnerThread() != current)
        return -1;
    int r = sharedCount(c);
    if (!readerShouldBlock() &&
        r < MAX_COUNT &&
        compareAndSetState(c, c + SHARED_UNIT)) {
        // 首次获取读锁
        if (r == 0) {
            firstReader = current;
            // 第一个线程重入
            firstReaderHoldCount = 1;
        } else if (firstReader == current) {
            // 重入
            firstReaderHoldCount++;
        } else {
            // 后续线程,通过 ThreadLocal 获取重入次数
            HoldCounter rh = cachedHoldCounter;
            if (rh == null || rh.tid != getThreadId(current))
                cachedHoldCounter = rh = readHolds.get();
            else if (rh.count == 0)
                readHolds.set(rh);
            rh.count++;
        }
        return 1;
    }
    return fullTryAcquireShared(current);
}

fullTryAcquireShared方法如下:

final int fullTryAcquireShared(Thread current) {
    /*
     * This code is in part redundant with that in
     * tryAcquireShared but is simpler overall by not
     * complicating tryAcquireShared with interactions between
     * retries and lazily reading hold counts.
     */
    HoldCounter rh = null;
    for (;;) {
        int c = getState();
        if (exclusiveCount(c) != 0) {
            if (getExclusiveOwnerThread() != current)
                return -1;
            // else we hold the exclusive lock; blocking here
            // would cause deadlock.
        } else if (readerShouldBlock()) {
            // Make sure we're not acquiring read lock reentrantly
            if (firstReader == current) {
                // assert firstReaderHoldCount > 0;
            } else {
                if (rh == null) {
                    rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current)) {
                        rh = readHolds.get();
                        if (rh.count == 0)
                            readHolds.remove();
                    }
                }
                if (rh.count == 0)
                    return -1;
            }
        }
        if (sharedCount(c) == MAX_COUNT)
            throw new Error("Maximum lock count exceeded");
        if (compareAndSetState(c, c + SHARED_UNIT)) {
            if (sharedCount(c) == 0) {
                firstReader = current;
                firstReaderHoldCount = 1;
            } else if (firstReader == current) {
                firstReaderHoldCount++;
            } else {
                if (rh == null)
                    rh = cachedHoldCounter;
                if (rh == null || rh.tid != getThreadId(current))
                    rh = readHolds.get();
                else if (rh.count == 0)
                    readHolds.set(rh);
                rh.count++;
                cachedHoldCounter = rh; // cache for release
            }
            return 1;
        }
    }
}

读锁的释放

protected final boolean tryReleaseShared(int unused) {
    Thread current = Thread.currentThread();
    if (firstReader == current) {
        // assert firstReaderHoldCount > 0;
        if (firstReaderHoldCount == 1)
            firstReader = null;
        else
            firstReaderHoldCount--;
    } else {
        HoldCounter rh = cachedHoldCounter;
        if (rh == null || rh.tid != getThreadId(current))
            rh = readHolds.get();
        int count = rh.count;
        if (count <= 1) {
            readHolds.remove();
            if (count <= 0)
                throw unmatchedUnlockException();
        }
        --rh.count;
    }
    for (;;) {
        int c = getState();
        int nextc = c - SHARED_UNIT;
        if (compareAndSetState(c, nextc))
            // Releasing the read lock has no effect on readers,
            // but it may allow waiting writers to proceed if
            // both read and write locks are now free.
            return nextc == 0;
    }
}

到此这篇关于ReentrantReadWriteLock 读写锁分析总结的文章就介绍到这了,更多相关ReentrantReadWriteLock 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • ReentrantReadWriteLock不能锁升级的原因总结

    为什么ReentrantReadWriteLock不能锁升级 在ReentrantReadWriteLock中,锁是不可以升级的,只能降级. 也就是如果当前线程持有了ReadLock,那么就不能再获取WriteLock,但是,如果当前线程持有了WriteLock,可以直接获取ReadLock 下面用代码尝试一下: Logger logger = LoggerFactory.getLogger(this.getClass()); ReentrantReadWriteLock reentrantRe

  • ReadWriteLock接口及其实现ReentrantReadWriteLock方法

    Java并发包的locks包里的锁基本上已经介绍得差不多了,ReentrantLock重入锁是个关键,在清楚的了解了同步器AQS的运行机制后,实际上再分析这些锁就会显得容易得多,这章节主讲另外一个重要的锁--ReentrantReadWriteLock读写锁. ReentrantLock是一个独占锁,也就是说只能由一个线程获取锁,但如果场景是线程只做读的操作呢?这样ReentrantLock就不是很合适,读的线程并不需要保证其线程的安全性,任何一个线程都能去获取锁,只有这样才能尽可能地保证性能和

  • Java多线程读写锁ReentrantReadWriteLock类详解

    目录 ReentrantReadWriteLock 读读共享 写写互斥 读写互斥 源码分析 写锁的获取与释放 读锁的获取与释放 参考文献 真实的多线程业务开发中,最常用到的逻辑就是数据的读写,ReentrantLock虽然具有完全互斥排他的效果(即同一时间只有一个线程正在执行lock后面的任务),这样做虽然保证了实例变量的线程安全性,但效率却是非常低下的.所以在JDK中提供了一种读写锁ReentrantReadWriteLock类,使用它可以加快运行效率. 读写锁表示两个锁,一个是读操作相关的锁

  • Java concurrency之共享锁和ReentrantReadWriteLock_动力节点Java学院整理

    ReadWriteLock 和 ReentrantReadWriteLock介绍 ReadWriteLock,顾名思义,是读写锁.它维护了一对相关的锁 - - "读取锁"和"写入锁",一个用于读取操作,另一个用于写入操作. "读取锁"用于只读操作,它是"共享锁",能同时被多个线程获取. "写入锁"用于写入操作,它是"独占锁",写入锁只能被一个线程锁获取. 注意:不能同时存在读取锁和写入锁

  • Java多线程之ReentrantReadWriteLock源码解析

    一.介绍 1.1 ReentrantReadWriteLock ReentrantReadWriteLock 是一个读写锁,允许多个读或者一个写线程在执行. 内部的 Sync 继承自 AQS,这个 Sync 包含一个共享读锁 ReadLock 和一个独占写锁 WriteLock. 该锁可以设置公平和非公平,默认非公平. 一个持有写锁的线程可以获取读锁.如果该线程先持有写锁,再持有读锁并释放写锁,称为锁降级. WriteLock支持Condition并且与ReentrantLock语义一致,而Re

  • Java多线程 ReentrantReadWriteLock原理及实例详解

    读写锁ReentrantReadWriteLock概述 读写锁ReentrantReadWriteLock,使用它比ReentrantLock效率更高. 读写锁表示两个锁,一个是读操作相关的锁,称为共享锁:另一个是写操作相关的锁,称为排他锁. 1.读和读之间不互斥,因为读操作不会有线程安全问题 2.写和写之间互斥,避免一个写操作影响另外一个写操作,引发线程安全问题 3.读和写之间互斥,避免读操作的时候写操作修改了内容,引发线程安全问题 多个Thread可以同时进行读取操作,但是同一时刻只允许一个

  • ReentrantReadWriteLock 读写锁分析总结

    目录 一.读写锁简介 二.读写锁使用 ReadWriteLock 接口 使用例子 三.锁的降级 锁降级的使用示例 四.ReentranReadWriteLock 结构 方法结构设计 读写状态设计 五.源码分析 写锁的加锁 写锁的释放 读锁的获取 读锁的释放 一.读写锁简介 现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁(读多写少).在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源(读读可以并发):但是如果一个线程想去写这些共

  • 详解Java ReentrantReadWriteLock读写锁的原理与实现

    目录 概述 原理概述 加锁原理 图解过程 源码解析 解锁原理 图解过程 源码解析 概述 ReentrantReadWriteLock读写锁是使用AQS的集大成者,用了独占模式和共享模式.本文和大家一起理解下ReentrantReadWriteLock读写锁的实现原理.在这之前建议大家阅读下下面3篇关联文章: 深入浅出理解Java并发AQS的独占锁模式 深入浅出理解Java并发AQS的共享锁模式 通俗易懂读写锁ReentrantReadWriteLock的使用 原理概述 上图是ReentrantR

  • Java多线程编程之读写锁ReadWriteLock用法实例

    读写锁:分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,你只要上好相应的锁即可.如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁:如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁.总之,读的时候上读锁,写的时候上写锁! 三个线程读数据,三个线程写数据示例: 可以同时读,读的时候不能写,不能同时写,写的时候不能读. 读的时候上读锁,读完解锁:写的时候上写锁,写完解锁. 注意finally解锁. package com.ljq.test.th

  • Java多线程编程中线程锁与读写锁的使用示例

    线程锁Lock Lock  相当于 当前对象的 Synchronized import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /* * Lock lock = new ReentrantLock(); * lock.lock(); lock.unLock(); * 类似于 synchronized,但不能与synchronized 混用 */ public class L

  • java并发编程中ReentrantLock可重入读写锁

    目录 一.ReentrantLock可重入锁 二.ReentrantReadWriteLock读写锁 三.读锁之间不互斥 一.ReentrantLock可重入锁 可重入锁ReentrantLock 是一个互斥锁,即同一时间只有一个线程能够获取锁定资源,执行锁定范围内的代码.这一点与synchronized 关键字十分相似.其基本用法代码如下: Lock lock = new ReentrantLock(); //实例化锁 //lock.lock(); //上锁 boolean locked =

  • Java 读写锁源码分析

    前言 在实际项目中,比如我们有一个共享资源文件,我们程序会会同时并发的去读.写这个共享资源文件,那怎么能保证在高并发场景下安全.高效读写呢?OK,看了下文便知 提示:以下是本篇文章正文内容,案例仅供参考 一.技术介绍 1.ReentranReadWriteLock是什么? ReadWriteLock提供了readLock和writeLock两种锁的操作机制,一个是读锁,一个是写锁,而它的实现类就是ReentranReadWriteLock 读锁可以在没有写锁的时候被多个线程同时持有,写锁是独占的

  • Go语言读写锁RWMutex的源码分析

    目录 前言 RWMutex 总览 深入源码 数据结构 RLock() RUnlock() Lock() Unlock() 常见问题 实战一下 前言 在前面两篇文章中 初见 Go Mutex .Go Mutex 源码详解,我们学习了 Go语言 中的 Mutex,它是一把互斥锁,每次只允许一个 goroutine 进入临界区,可以保证临界区资源的状态正确性.但是有的情况下,并不是所有 goroutine 都会修改临界区状态,可能只是读取临界区的数据,如果此时还是需要每个 goroutine 拿到锁依

  • 一文了解Java读写锁ReentrantReadWriteLock的使用

    目录 概述 ReentrantReadWriteLock介绍 实战案例 验证读读共享模式 验证读写互斥模式 真实缓存例子 概述 ReentrantReadWriteLock不知道大家熟悉吗?其实在实际的项目中用的比较少,反正我所在的项目没有用到过. ReentrantReadWriteLock称为读写锁,它提供一个读锁,支持多个线程共享同一把锁.它也提供了一把写锁,是独占锁,和其他读锁或者写锁互斥,表明只有一个线程能持有锁资源.通过两把锁的协同工作,能够最大化的提高读写的性能,特别是读多写少的场

  • Java编程读写锁详解

    ReadWriteLock也是一个接口,提供了readLock和writeLock两种锁的操作机制,一个资源可以被多个线程同时读,或者被一个线程写,但是不能同时存在读和写线程. 基本规则: 读读不互斥 读写互斥 写写互斥 问题: 既然读读不互斥,为何还要加读锁 答: 如果只是读,是不需要加锁的,加锁本身就有性能上的损耗 如果读可以不是最新数据,也不需要加锁 如果读必须是最新数据,必须加读写锁 读写锁相较于互斥锁的优点仅仅是允许读读的并发,除此之外并无其他. 结论: 读写锁能够保证读取数据的 严格

随机推荐