一文搞懂C++ 动态内存

了解动态内存在 C++ 中是如何工作的是成为一名合格的 C++ 程序员必不可少的。C++ 程序中的内存分为两个部分:

  • 栈:在函数内部声明的所有变量都将占用栈内存。
  • 堆:这是程序中未使用的内存,在程序运行时可用于动态分配内存。

很多时候,您无法提前预知需要多少内存来存储某个定义变量中的特定信息,所需内存的大小需要在运行时才能确定。

在 C++ 中,您可以使用特殊的运算符为给定类型的变量在运行时分配堆内的内存,这会返回所分配的空间地址。这种运算符即new 运算符。

如果您不再需要动态分配的内存空间,可以使用 delete 运算符,删除之前由 new 运算符分配的内存。

new 和 delete 运算符

下面是使用 new 运算符来为任意的数据类型动态分配内存的通用语法:

new data-type;

在这里,data-type 可以是包括数组在内的任意内置的数据类型,也可以是包括类或结构在内的用户自定义的任何数据类型。让我们先来看下内置的数据类型。例如,我们可以定义一个指向 double 类型的指针,然后请求内存,该内存在执行时被分配。我们可以按照下面的语句使用 new 运算符来完成这点:

double* pvalue = NULL; // 初始化为 null 的指针
pvalue = new double;  // 为变量请求内存

如果自由存储区已被用完,可能无法成功分配内存。所以建议检查 new 运算符是否返回 NULL 指针,并采取以下适当的操作:

double* pvalue = NULL;
if( !(pvalue = new double ))
{
  cout << "Error: out of memory." <<endl;
  exit(1);

}

malloc() 函数在 C 语言中就出现了,在 C++ 中仍然存在,但建议尽量不要使用 malloc() 函数。new 与 malloc() 函数相比,其主要的优点是,new 不只是分配了内存,它还创建了对象。

在任何时候,当您觉得某个已经动态分配内存的变量不再需要使用时,您可以使用 delete 操作符释放它所占用的内存,如下所示:

delete pvalue;    // 释放 pvalue 所指向的内存

下面的实例中使用了上面的概念,演示了如何使用 new 和 delete 运算符:

实例

#include <iostream>
using namespace std;

int main ()
{
  double* pvalue = NULL; // 初始化为 null 的指针
  pvalue = new double;  // 为变量请求内存

  *pvalue = 29494.99;   // 在分配的地址存储值
  cout << "Value of pvalue : " << *pvalue << endl;

  delete pvalue;     // 释放内存

  return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Value of pvalue : 29495

数组的动态内存分配

假设我们要为一个字符数组(一个有 20 个字符的字符串)分配内存,我们可以使用上面实例中的语法来为数组动态地分配内存,如下所示:

char* pvalue = NULL;  // 初始化为 null 的指针
pvalue = new char[20]; // 为变量请求内存

要删除我们刚才创建的数组,语句如下:

delete [] pvalue;    // 删除 pvalue 所指向的数组

下面是 new 操作符的通用语法,可以为多维数组分配内存,如下所示:

一维数组

// 动态分配,数组长度为 m
int *array=new int [m];

//释放内存
delete [] array;

二维数组

int **array
// 假定数组第一维长度为 m, 第二维长度为 n
// 动态分配空间
array = new int *[m];
for( int i=0; i<m; i++ )
{
  array[i] = new int [n] ;
}
//释放
for( int i=0; i<m; i++ )
{
  delete [] array[i];
}
delete [] array;

二维数组实例测试:

实例

#include <iostream>
using namespace std;

int main()
{
  int **p;
  int i,j;  //p[4][8]
  //开始分配4行8列的二维数据
  p = new int *[4];
  for(i=0;i<4;i++){
    p[i]=new int [8];
  }

  for(i=0; i<4; i++){
    for(j=0; j<8; j++){
      p[i][j] = j*i;
    }
  }
  //打印数据
  for(i=0; i<4; i++){
    for(j=0; j<8; j++)
    {
      if(j==0) cout<<endl;
      cout<<p[i][j]<<"\t";
    }
  }
  //开始释放申请的堆
  for(i=0; i<4; i++){
    delete [] p[i];
  }
  delete [] p;
  return 0;
}

三维数组

int ***array;
// 假定数组第一维为 m, 第二维为 n, 第三维为h
// 动态分配空间
array = new int **[m];
for( int i=0; i<m; i++ )
{
  array[i] = new int *[n];
  for( int j=0; j<n; j++ )
  {
    array[i][j] = new int [h];
  }
}
//释放
for( int i=0; i<m; i++ )
{
  for( int j=0; j<n; j++ )
  {
    delete[] array[i][j];
  }
  delete[] array[i];
}
delete[] array;

三维数组测试实例:

实例

#include <iostream>
using namespace std;

int main()
{
  int i,j,k;  // p[2][3][4]

  int ***p;
  p = new int **[2];
  for(i=0; i<2; i++)
  {
    p[i]=new int *[3];
    for(j=0; j<3; j++)
      p[i][j]=new int[4];
  }

  //输出 p[i][j][k] 三维数据
  for(i=0; i<2; i++)
  {
    for(j=0; j<3; j++)
    {
      for(k=0;k<4;k++)
      {
        p[i][j][k]=i+j+k;
        cout<<p[i][j][k]<<" ";
      }
      cout<<endl;
    }
    cout<<endl;
  }

  // 释放内存
  for(i=0; i<2; i++)
  {
    for(j=0; j<3; j++)
    {
      delete [] p[i][j];
    }
  }
  for(i=0; i<2; i++)
  {
    delete [] p[i];
  }
  delete [] p;
  return 0;
}

对象的动态内存分配

对象与简单的数据类型没有什么不同。例如,请看下面的代码,我们将使用一个对象数组来理清这一概念:

实例

#include <iostream>
using namespace std;

class Box
{
  public:
   Box() {
     cout << "调用构造函数!" <<endl;
   }
   ~Box() {
     cout << "调用析构函数!" <<endl;
   }
};

int main( )
{
  Box* myBoxArray = new Box[4];

  delete [] myBoxArray; // 删除数组
  return 0;
}

如果要为一个包含四个 Box 对象的数组分配内存,构造函数将被调用 4 次,同样地,当删除这些对象时,析构函数也将被调用相同的次数(4次)。

当上面的代码被编译和执行时,它会产生下列结果:

调用构造函数!
调用构造函数!
调用构造函数!
调用构造函数!
调用析构函数!
调用析构函数!
调用析构函数!
调用析构函数!

以上就是一文搞懂C++ 动态内存的详细内容,更多关于C++ 动态内存的资料请关注我们其它相关文章!

(0)

相关推荐

  • C++ 中继承与动态内存分配的详解

    C++ 中继承与动态内存分配的详解 继承是怎样与动态内存分配进行互动的呢?例如,如果基类使用动态内存分配,并重新定义赋值和复制构造函数,这将怎样影响派生类的实现呢?这个问题的答案取决于派生类的属性.如果派生类也使用动态内存分配,那么就需要学习几个新的小技巧.下面来看看这两种情况: 一.派生类不使用new 派生类是否需要为显示定义析构函数,复制构造函数和赋值操作符呢? 不需要! 首先,来看是否需要析构函数,如果没有定义析构函数,编译器将定义一个不执行任何操作的默认构造函数.实际上,派生类的默认构造

  • C++动态内存分配(new/new[]和delete/delete[])详解

    C++动态内存分配(new/new[]和delete/delete[])详解 为了解决这个普通的编程问题,在运行时能创建和销毁对象是基本的要求.当然,C已提供了动态内存分配函数malloc( )和free( ),以及malloc( )的变种(realloc:改变分配内存的大小,calloc:指针指向内存前初始化),这些函数在运行时从堆中(也称自由内存)分配存储单元,但是运用这些库函数需要计算需要开辟内存的大小,容易出现错误. 那么通常我们在C语言中我们开辟内存的方式如下: (void*)mall

  • 详解C++ 动态内存分配与命名空间

    1.C++中的动态内存分配 通过new关键字进行动态内存申请 C++中的动态内存申请时基于类型进行的 delete关键用于内存释放 C语言其实是不支持动态内存分配的,是通过malloc库函数来实现的,可能有一些硬件根本不支持malloc:而C++ new是一个关键字,不管在任意编译器上,任意硬件平台上都是能够进行动态内存分配的,这是本质区别. malloc是基于字节来进行动态内存分配的,new则是基于类型来进行动态内存分配 // 变量申请: Type * pointer = new Type;

  • c++动态内存空间示例(自定义空间类型大小和空间长度)

    动态内存空间的申请示范 利用C++的特性,能够自定义空间的类型大小和空间长度 下面这个程序是个数组动态配置的简单示例 复制代码 代码如下: #include <iostream>using namespace std; int main(){   int size = 0; cout << "请输入数组长度:";  //能够自定义的动态申请空间长度    cin >> size;    int *arr_Point = new int[size];

  • C/C++ 传递动态内存的深入理解

    当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道.这些往往会使人受尽折磨.所以如果你想深入C/C++编程,你必须静下心来,好好苦一番.现在我们将讨论C/C++里我认为哪一本书都没有完全说清楚,也是涉及概念细节最多,语言中最难的技术之一的动态内存的传递.并且在软件开发中很多专业人员并不能写出相关的合格的代码.[引入] 看下面的例子,这是我们在编写库函数或者项目内的共同函数经常希望的. 复制代码 代码如下: void MyFunc(char *pReturn, size_t siz

  • 一文搞懂C++ 动态内存

    了解动态内存在 C++ 中是如何工作的是成为一名合格的 C++ 程序员必不可少的.C++ 程序中的内存分为两个部分: 栈:在函数内部声明的所有变量都将占用栈内存. 堆:这是程序中未使用的内存,在程序运行时可用于动态分配内存. 很多时候,您无法提前预知需要多少内存来存储某个定义变量中的特定信息,所需内存的大小需要在运行时才能确定. 在 C++ 中,您可以使用特殊的运算符为给定类型的变量在运行时分配堆内的内存,这会返回所分配的空间地址.这种运算符即new 运算符. 如果您不再需要动态分配的内存空间,

  • 一文搞懂如何避免JavaScript内存泄漏

    目录 一.什么是内存泄漏 二.常见的内存泄漏 1.意外的全局变量 2. 计时器 3. 闭包 4. 事件监听器 5.缓存 6.分离的DOM元素 三.识别内存泄漏 1.使用性能分析器可视化内存消耗 2. 识别分离的 DOM 节点 大家好,我是CUGGZ.SPA(单页应用程序)的兴起,促使我们更加关注与内存相关的 JavaScript 编码实践.如果应用使用的内存越来越多,就会严重影响性能,甚至导致浏览器的崩溃.下面就来看看JavaScript中常见的内存泄漏以及如何避免内存泄漏. 一.什么是内存泄漏

  • 一文搞懂如何实现Java,Spring动态启停定时任务

    目录 为什么需要定时任务 Java定时任务的原理 Timer+TimerTask ScheduledThreadPoolExecutor Timer VS ScheduledThreadPoolExecutor Spring定时任务 @Scheduled定时任务原理(源码) 为什么需要定时任务 定时任务的应用场景十分广泛,如定时清理文件.定时生成报表.定时数据同步备份等. Java定时任务的原理 jdk自带的库中,有两种技术可以实现定时任务,一种是Timer,另一种是ScheduledThrea

  • 一文搞懂JavaScript中的内存泄露

    目录 什么是内存泄漏 怎么检测内存泄漏 Performance Memory 内存泄漏的场景 垃圾回收算法 引用计数 循环引用 标记清除 闭包是内存泄漏吗 总结 以前我们说的内存泄漏,通常发生在后端,但是不代表前端就不会有内存泄漏.特别是当前端项目变得越来越复杂后,前端也逐渐称为内存泄漏的高发区.本文就带你认识一下Javascript的内存泄漏. 什么是内存泄漏 什么是内存?内存其实就是程序在运行时,系统为其分配的一块存储空间.每一块内存都有对应的生命周期: 内存分配:在声明变量.函数时,系统分

  • 一文搞懂Golang中的内存逃逸

    目录 前言 什么是内存逃逸 查看对象是否发生逃逸 内存逃逸分析的意义 怎么避免内存逃逸 小结 前言 我们都知道go语言中内存管理工作都是由Go在底层完成的,这样我们可以不用过多的关注底层的内存问题,有更多的精力去关注业务逻辑, 但掌握内存的管理,理解内存分配机制,可以让你写出更高效的代码,本文主要总结一下 Golang内存逃逸分析,需要的朋友可以参考以下内容,希望对大家有帮助. 什么是内存逃逸 在了解什么是内存逃逸之前,我们先来了解两个概念,栈内存和堆内存. 堆内存(Heap):一般来讲是人为手

  • 一文搞懂C# 数据类型

    在 C# 中,变量分为以下几种类型: 值类型(Value types) 引用类型(Reference types) 指针类型(Pointer types) 值类型(Value types) 值类型变量可以直接分配给一个值.它们是从类 System.ValueType 中派生的. 值类型直接包含数据.比如 int.char.float,它们分别存储数字.字符.浮点数.当您声明一个 int 类型时,系统分配内存来存储值. 下表列出了 C# 2010 中可用的值类型: 类型 描述 范围 默认值 boo

  • 一文搞懂C++多态的用法

    目录 前言 1.多态的概念 2.C++中多态的分类 (1)静态多态 (2)动态多态 3.多态的构成条件 (1)举例 (2)两个概念 (3)多态的构成条件 4.虚函数重写的两个例外 (1)协变 5.final与override (1)final (2)override 6.抽象类 7.总结 前言 C++多态是在继承的基础上实现的,了解多态之前我们需要掌握一定的C++继承的知识,本文将介绍C++中多态的概念,构成条件以及用法. 1.多态的概念 多态,通俗来讲就是多种形态,具体点就是去完成某个行为,当

  • 一文搞懂Python中列表List和元组Tuple的使用

    目录 列表 List 列表是有序的 列表可以包含任意对象 通过索引访问列表元素 列表嵌套 列表可变 元组 Tuple 定义和使用元组 元素对比列表的优点 元组分配.打包和解包 List 与 Tuple 的区别 列表 List 列表是任意对象的集合,在 Python 中通过逗号分隔的对象序列括在方括号 ( [] ) 中 people_list = ['曹操', '曹丕', '甄姫', '蔡文姫'] print(people_list) ['曹操', '曹丕', '甄姫', '蔡文姫'] peopl

  • 一文搞懂Python的hasattr()、getattr()、setattr() 函数用法

    目录 hasattr() getattr() setattr() hasattr() hasattr() 函数用来判断某个类实例对象是否包含指定名称的属性或方法.该函数的语法格式如下: hasattr(obj, name) 其中 obj 指的是某个类的实例对象,name 表示指定的属性名或方法名,返回BOOL值,有name特性返回True, 否则返回False. 例子: class demo: def __init__ (self): self.name = "lily" def sa

  • 一文搞懂Spring中的注解与反射

    目录 前言 一.内置(常用)注解 1.1@Overrode 1.2@RequestMapping 1.3@RequestBody 1.4@GetMapping 1.5@PathVariable 1.6@RequestParam 1.7@ComponentScan 1.8@Component 1.9@Service 1.10@Repository 二.元注解 @Target @Retention @Documented @Inherited 三.自定义注解 四.反射机制概述 4.1动态语言与静态语

随机推荐