Pytorch损失函数nn.NLLLoss2d()用法说明

最近做显著星检测用到了NLL损失函数

对于NLL函数,需要自己计算log和softmax的概率值,然后从才能作为输入

输入 [batch_size, channel , h, w]

目标 [batch_size, h, w]

输入的目标矩阵,每个像素必须是类型.举个例子。第一个像素是0,代表着类别属于输入的第1个通道;第二个像素是0,代表着类别属于输入的第0个通道,以此类推。

x = Variable(torch.Tensor([[[1, 2, 1],
       [2, 2, 1],
       [0, 1, 1]],
       [[0, 1, 3],
       [2, 3, 1],
       [0, 0, 1]]]))

x = x.view([1, 2, 3, 3])
print("x输入", x)

这里输入x,并改成[batch_size, channel , h, w]的格式。

soft = nn.Softmax(dim=1)

log_soft = nn.LogSoftmax(dim=1)

然后使用softmax函数计算每个类别的概率,这里dim=1表示从在1维度

上计算,也就是channel维度。logsoftmax是计算完softmax后在计算log值

手动计算举个栗子:第一个元素

y = Variable(torch.LongTensor([[1, 0, 1],
       [0, 0, 1],
       [1, 1, 1]]))

y = y.view([1, 3, 3])

输入label y,改变成[batch_size, h, w]格式

loss = nn.NLLLoss2d()
out = loss(x, y)
print(out)

输入函数,得到loss=0.7947

来手动计算

第一个label=1,则 loss=-1.3133

第二个label=0, 则loss=-0.3133

.
…
…
loss= -(-1.3133-0.3133-0.1269-0.6931-1.3133-0.6931-0.6931-1.3133-0.6931)/9 =0.7947222222222223

是一致的

注意:这个函数会对每个像素做平均,每个batch也会做平均,这里有9个像素,1个batch_size。

补充知识:PyTorch:NLLLoss2d

我就废话不多说了,大家还是直接看代码吧~

import torch
import torch.nn as nn
from torch import autograd
import torch.nn.functional as F

inputs_tensor = torch.FloatTensor([
[[2, 4],
 [1, 2]],
[[5, 3],
 [3, 0]],
[[5, 3],
 [5, 2]],
[[4, 2],
 [3, 2]],
 ])
inputs_tensor = torch.unsqueeze(inputs_tensor,0)
# inputs_tensor = torch.unsqueeze(inputs_tensor,1)
print '--input size(nBatch x nClasses x height x width): ', inputs_tensor.shape

targets_tensor = torch.LongTensor([
 [0, 2],
 [2, 3]
])

targets_tensor = torch.unsqueeze(targets_tensor,0)
print '--target size(nBatch x height x width): ', targets_tensor.shape

inputs_variable = autograd.Variable(inputs_tensor, requires_grad=True)
inputs_variable = F.log_softmax(inputs_variable)
targets_variable = autograd.Variable(targets_tensor)

loss = nn.NLLLoss2d()
output = loss(inputs_variable, targets_variable)
print '--NLLLoss2d: {}'.format(output)

以上这篇Pytorch损失函数nn.NLLLoss2d()用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • PyTorch的SoftMax交叉熵损失和梯度用法

    在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算 关于softmax_cross_entropy求导的过程,可以参考HERE 示例: # -*- coding: utf-8 -*- import torch import torch.autograd as autograd from torch.autograd import Variable import torch.nn.functional as F import torch.nn as nn import nu

  • Pytorch 的损失函数Loss function使用详解

    1.损失函数 损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一.另一个必不可少的要素是优化器. 损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等. 损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较). 损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数. 我们先定义两个二维数组,然后用不同的损失函数计算其损失值. import

  • Pytorch十九种损失函数的使用详解

    损失函数通过torch.nn包实现, 1 基本用法 criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 2 损失函数 2-1 L1范数损失 L1Loss 计算 output 和 target 之差的绝对值. torch.nn.L1Loss(reduction='mean') 参数: reduction-三个值,none: 不使用约简:mean:返回loss和的平均值: sum:返回loss的和.默认:

  • 关于pytorch中网络loss传播和参数更新的理解

    相比于2018年,在ICLR2019提交论文中,提及不同框架的论文数量发生了极大变化,网友发现,提及tensorflow的论文数量从2018年的228篇略微提升到了266篇,keras从42提升到56,但是pytorch的数量从87篇提升到了252篇. TensorFlow: 228--->266 Keras: 42--->56 Pytorch: 87--->252 在使用pytorch中,自己有一些思考,如下: 1. loss计算和反向传播 import torch.nn as nn

  • Pytorch损失函数nn.NLLLoss2d()用法说明

    最近做显著星检测用到了NLL损失函数 对于NLL函数,需要自己计算log和softmax的概率值,然后从才能作为输入 输入 [batch_size, channel , h, w] 目标 [batch_size, h, w] 输入的目标矩阵,每个像素必须是类型.举个例子.第一个像素是0,代表着类别属于输入的第1个通道:第二个像素是0,代表着类别属于输入的第0个通道,以此类推. x = Variable(torch.Tensor([[[1, 2, 1], [2, 2, 1], [0, 1, 1]]

  • pytorch中nn.Conv1d的用法详解

    先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自我修养) class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn

  • Pytorch 中retain_graph的用法详解

    用法分析 在查看SRGAN源码时有如下损失函数,其中设置了retain_graph=True,其作用是什么? ############################ # (1) Update D network: maximize D(x)-1-D(G(z)) ########################### real_img = Variable(target) if torch.cuda.is_available(): real_img = real_img.cuda() z = V

  • pytorch1.0中torch.nn.Conv2d用法详解

    Conv2d的简单使用 torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样. 在 torch 中,Conv2d 有几个基本的参数,分别是 in_channels 输入图像的深度 out_channels 输出图像的深度 kernel_size 卷积核大小,正方形卷积只为单个数字 stride 卷积步长,默认为1 padding 卷积是否造成尺寸丢失,1为不丢失 与tensorflow不一样的是,pytorch中的使用更加清晰化,我们可以使用这种方法定义输

  • Pytorch maxpool的ceil_mode用法

    pytorch里面的maxpool,有一个属性叫ceil_mode,这个属性在api里面的解释是 ceil_mode: when True, will use ceil instead of floor to compute the output shape 也就是说,在计算输出的shape的时候,如果ceil_mode的值为True,那么则用天花板模式,否则用地板模式. ??? 举两个例子就明白了. # coding:utf-8 import torch import torch.nn as

  • 基于pytorch中的Sequential用法说明

    class torch.nn.Sequential(* args) 一个时序容器.Modules 会以他们传入的顺序被添加到容器中.当然,也可以传入一个OrderedDict. 为了更容易的理解如何使用Sequential, 下面给出了一个例子: # Example of using Sequential model = nn.Sequential( nn.Conv2d(1,20,5), nn.ReLU(), nn.Conv2d(20,64,5), nn.ReLU() ) # Example o

  • pytorch中的weight-initilzation用法

    pytorch中的权值初始化 官方论坛对weight-initilzation的讨论 torch.nn.Module.apply(fn) torch.nn.Module.apply(fn) # 递归的调用weights_init函数,遍历nn.Module的submodule作为参数 # 常用来对模型的参数进行初始化 # fn是对参数进行初始化的函数的句柄,fn以nn.Module或者自己定义的nn.Module的子类作为参数 # fn (Module -> None) – function t

  • pytorch LayerNorm参数的用法及计算过程

    说明 LayerNorm中不会像BatchNorm那样跟踪统计全局的均值方差,因此train()和eval()对LayerNorm没有影响. LayerNorm参数 torch.nn.LayerNorm( normalized_shape: Union[int, List[int], torch.Size], eps: float = 1e-05, elementwise_affine: bool = True) normalized_shape 如果传入整数,比如4,则被看做只有一个整数的li

  • 解决pytorch 损失函数中输入输出不匹配的问题

    一.pytorch 损失函数中输入输出不匹配问题 File "C:\Users\Rain\AppData\Local\Programs\Python\Anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\modules\module.py", line 491, in __call__  result = self.forward(*input, **kwargs) File "C:\Users\Ra

  • pytorch中Parameter函数用法示例

    目录 用法介绍 代码介绍 用法介绍 pytorch中的Parameter函数可以对某个张量进行参数化.它可以将不可训练的张量转化为可训练的参数类型,同时将转化后的张量绑定到模型可训练参数的列表中,当更新模型的参数时一并将其更新. torch.nn.parameter.Parameter data (Tensor):表示需要参数化的张量 requires_grad (bool, optional):表示是否该张量是否需要梯度,默认值为True 代码介绍  pytorch中的Parameter函数具

随机推荐