Python的内存泄漏及gc模块的使用分析

一般来说在 Python 中,为了解决内存泄漏问题,采用了对象引用计数,并基于引用计数实现自动垃圾回收。
由于Python 有了自动垃圾回收功能,就造成了不少初学者误认为自己从此过上了好日子,不必再受内存泄漏的骚扰了。但如果仔细查看一下Python文档对 __del__() 函数的描述,就知道这种好日子里也是有阴云的。下面摘抄一点文档内容如下:

Some common situations that may prevent the reference count of an object from going to zero include: circular references between objects (e.g., a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the stack frame of a function that caught an exception (the traceback stored in sys.exc_traceback keeps the stack frame alive); or a reference to the object on the stack frame that raised an unhandled exception in interactive mode (the traceback stored in sys.last_traceback keeps the stack frame alive).

可见,有 __del__() 函数的对象间的循环引用是导致内存泄漏的主凶。
另外需要说明:对没有 __del__() 函数的 Python 对象间的循环引用,是可以被自动垃圾回收掉的。

如何知道一个对象是否内存泄漏了呢?

方法一、当你认为一个对象应该被销毁时(即引用计数为 0),可以通过 sys.getrefcount(obj) 来获取对象的引用计数,并根据返回值是否为 0 来判断是否内存泄漏。如果返回的引用计数不为 0,说明在此刻对象 obj 是不能被垃圾回收器回收掉的。

方法二、也可以通过 Python 扩展模块 gc 来查看不能回收的对象的详细信息。

首先,来看一段正常的测试代码:

#--------------- code begin --------------
# -*- coding: utf-8 -*-
import gc
import sys

class CGcLeak(object):
  def __init__(self):
    self._text = '#'*10

  def __del__(self):
    pass

def make_circle_ref():
  _gcleak = CGcLeak()
#  _gcleak._self = _gcleak # test_code_1
  print '_gcleak ref count0:%d' % sys.getrefcount(_gcleak)
  del _gcleak
  try:
    print '_gcleak ref count1:%d' % sys.getrefcount(_gcleak)
  except UnboundLocalError:
    print '_gcleak is invalid!'

def test_gcleak():
  # Enable automatic garbage collection.
  gc.enable()
  # Set the garbage collection debugging flags.
  gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_UNCOLLECTABLE | /
    gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS)

  print 'begin leak test...'
  make_circle_ref()

  print 'begin collect...'
  _unreachable = gc.collect()
  print 'unreachable object num:%d' % _unreachable
  print 'garbage object num:%d' % len(gc.garbage)

if __name__ == '__main__':
  test_gcleak()

在 test_gcleak() 中,设置垃圾回收器调试标志后,再用 collect() 进行垃圾回收,最后打印出该次垃圾回收发现的不可达的垃圾对象数和整个解释器中的垃圾对象数。

gc.garbage 是一个 list 对象,列表项是垃圾收集器发现的不可达(即是垃圾对象)、但又不能释放(即不能回收)的对象。文档描述为:A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
通常,gc.garbage 中的对象是引用环中的对象。因为 Python 不知道按照什么样的安全次序来调用环中对象的 __del__() 函数,导致对象始终存活在 gc.garbage 中,造成内存泄漏。如果知道一个安全的次序,那么就打破引用环,再执行 del gc.garbage[:] ,以清空垃圾对象列表。

上段代码输出为(#后字符串为笔者所加注释):

#-----------------------------------------
begin leak test...
# 变量 _gcleak 的引用计数为 2.
_gcleak ref count0:2
# _gcleak 变为不可达(unreachable)的非法变量.
_gcleak is invalid!
# 开始垃圾回收
begin collect...
# 本次垃圾回收发现的不可达的垃圾对象数为 0.
unreachable object num:0
# 整个解释器中的垃圾对象数为 0.
garbage object num:0
#-----------------------------------------

由此可见 _gcleak 对象的引用计数是正确的,也没有任何对象发生内存泄漏。

如果不注释掉 make_circle_ref() 中的 test_code_1 语句:

_gcleak._self = _gcleak

也就是让 _gcleak 形成一个自己对自己的循环引用。再运行上述代码,输出结果就变成:

#-----------------------------------------
begin leak test...
_gcleak ref count0:3
_gcleak is invalid!
begin collect...
# 发现可以回收的垃圾对象: 地址为 012AA090,类型为 CGcLeak.
gc: uncollectable <CGcLeak 012AA090>
gc: uncollectable <dict 012AC1E0>
unreachable object num:2
#!! 不能回收的垃圾对象数为 1,导致内存泄漏!
garbage object num:1
#-----------------------------------------

可见 <CGcLeak 012AA090> 对象发生了内存泄漏!!而多出的 dict 垃圾就是泄漏的 _gcleak 对象的字典,打印出字典信息为:

{'_self': <__main__.CGcLeak object at 0x012AA090>, '_text': '##########'}

除了对自己的循环引用,多个对象间的循环引用也会导致内存泄漏。简单举例如下:

#--------------- code begin --------------

class CGcLeakA(object):
  def __init__(self):
    self._text = '#'*10

  def __del__(self):
    pass

class CGcLeakB(object):
  def __init__(self):
    self._text = '*'*10

  def __del__(self):
    pass

def make_circle_ref():
  _a = CGcLeakA()
  _b = CGcLeakB()
  _a._b = _b # test_code_2
  _b._a = _a # test_code_3
  print 'ref count0:a=%d b=%d' % /
    (sys.getrefcount(_a), sys.getrefcount(_b))
#  _b._a = None  # test_code_4
  del _a
  del _b
  try:
    print 'ref count1:a=%d' % sys.getrefcount(_a)
  except UnboundLocalError:
    print '_a is invalid!'
  try:
    print 'ref count2:b=%d' % sys.getrefcount(_b)
  except UnboundLocalError:
    print '_b is invalid!'

#--------------- code end ----------------

这次测试后输出结果为:

#-----------------------------------------
begin leak test...
ref count0:a=3 b=3
_a is invalid!
_b is invalid!
begin collect...
gc: uncollectable <CGcLeakA 012AA110>
gc: uncollectable <CGcLeakB 012AA0B0>
gc: uncollectable <dict 012AC1E0>
gc: uncollectable <dict 012AC0C0>
unreachable object num:4
garbage object num:2
#-----------------------------------------

可见 _a,_b 对象都发生了内存泄漏。因为二者是循环引用,垃圾回收器不知道该如何回收,也就是不知道该首先调用那个对象的 __del__() 函数。

采用以下任一方法,打破环状引用,就可以避免内存泄漏:

1.注释掉 make_circle_ref() 中的 test_code_2 语句;
2.注释掉 make_circle_ref() 中的 test_code_3 语句;
3.取消对 make_circle_ref() 中的 test_code_4 语句的注释。

相应输出结果变为:

#-----------------------------------------
begin leak test...
ref count0:a=2 b=3 # 注:此处输出结果视情况变化.
_a is invalid!
_b is invalid!
begin collect...
unreachable object num:0
garbage object num:0
#-----------------------------------------

结论:Python 的 gc 有比较强的功能,比如设置 gc.set_debug(gc.DEBUG_LEAK) 就可以进行循环引用导致的内存泄露的检查。如果在开发时进行内存泄露检查;在发布时能够确保不会内存泄露,那么就可以延长 Python 的垃圾回收时间间隔、甚至主动关闭垃圾回收机制,从而提高运行效率。

(0)

相关推荐

  • C++内存泄漏及检测工具详解

    首先我们需要知道程序有没有内存泄露,然后定位到底是哪行代码出现内存泄露了,这样才能将其修复. 最简单的方法当然是借助于专业的检测工具,比较有名如BoundsCheck,功能非常强大,相信做C++开发的人都离不开它.此外就是不使用任何工具,而是自己来实现对内存泄露的监控,分如下两种情况: 一. 在 MFC 中检测内存泄漏 假如是用MFC的程序的话,很简单.默认的就有内存泄露检测的功能. 我们用VS2005生成了一个MFC的对话框的程序,发现他可以自动的检测内存泄露.不用我们做任何特殊的操作. 仔细

  • Android内存泄漏终极解决篇(上)

    一.概述 在Android的开发中,经常听到"内存泄漏"这个词."内存泄漏"就是一个对象已经不需要再使用了,但是因为其它的对象持有该对象的引用,导致它的内存不能被回收."内存泄漏"的慢慢积累,最终会导致OOM的发生,千里之堤,毁于蚁穴.所以在写代码的过程中,应该要注意规避会导致"内存泄漏"的代码写法,提高软件的健壮性. 本文将从发现问题.解决问题.总结问题的三个角度出发,循序渐进,彻底解决"内存泄漏"的问题

  • javascript removeChild 导致的内存泄漏

    为得求证,自己写了一个页面来验证怎样内存泄漏.代码如下 复制代码 代码如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head

  • 谈一谈Android内存泄漏问题

    内存泄漏:是指内存得不到GC的及时回收,从而造成内存占用过多,从而导致程序Crash,也就是常说的OOM. 一.static 先来看下面一段代码 public class DBHelper { private static DBHelper db= null; private DBHelper() { } public static DBHelper getInstance(Context context) { if (bitmapUtils == null) { synchronized (D

  • JQuery1.4+ Ajax IE8 内存泄漏问题

    并且JQuery1.3.2版本不存在,JQuery1.4+版本存在 通过对比,最终找到这两个版本的其中一个差别 JQuery1.4+在ajax方法增加了一段代码,用于在abort时调用onreadystatechange方法 复制代码 代码如下: try { var oldAbort = xhr.abort; xhr.abort = function() { if ( xhr ) { oldAbort.call( xhr ); } onreadystatechange(); }; } catch

  • 插件:检测javascript的内存泄漏

    转自:http://www.ajaxjs.com/yuicn/bbs/ShowPost.asp?ThreadID=6 2006-10-18 @ 07:59:29 · 作者 volcano Javascript的内存泄漏,不是太可怕.它只会悄悄的,慢慢的把你的浏览器拖的巨慢无比,让你愤怒的拍案而起,大骂微软出品的破烂浏览器危害社会.这一切有可能并不是浏览器的错,可能只是因为网页上有些javascript的内存泄漏罢了. 在科技日益发达今天,我们有必要武装自己,以及自己的浏览器,这样万一浏览器倒下了

  • try finally 妙用,防止内存泄漏

    function createButton(){ var obj = document.createElement("button"); obj.innerHTML="点我!"; obj.onclick=function(){ //处理click事件 } obj.onmouseover=function(){ //处理mouseover事件 } return obj;//这里由于需要返回创建的对象,所以不能把obj直接设为null. return 后obj是局部变量

  • Android内存泄漏终极解决篇(下)

    一.概述 在 Android内存泄漏终极解决篇(上)中我们介绍了如何检查一个App是否存在内存泄漏的问题,本篇将总结典型的内存泄漏的代码,并给出对应的解决方案.内存泄漏的主要问题可以分为以下几种类型: 静态变量引起的内存泄漏 非静态内部类引起的内存泄漏 资源未关闭引起的内存泄漏 二.静态变量引起的内存泄漏 在java中静态变量的生命周期是在类加载时开始,类卸载时结束.换句话说,在android中其生命周期是在进程启动时开始,进程死亡时结束.所以在程序的运行期间,如果进程没有被杀死,静态变量就会一

  • 简单三步,搞掂内存泄漏

    原文地址:http://www.jackslocum.com/blog/2006/10/02/3-easy-steps-to-avoid-javascript-memory-leaks/ 你可能还未知道,你浏览的大多数的js网站,会引起 内存泄漏.听起来有点夸张,但这是事实,难道我会骗你吗?泄漏监视器 Leak Monitor 这是个方便的FireFox扩展,当你离开那页的时候它便会指向JavsScript对象,如果出现泄漏的话会弹出一个窗口显示细节内容,而且能够告诉你是那个对象或函数引起的泄漏

  • 防止动态加载JavaScript引起的内存泄漏问题

    为了释放脚本资源,通常在返回后还要一些进行额外的处理. 复制代码 代码如下: script = document.createElement('script'); script.src = 'http://example.com/cgi-bin/jsonp?q=What+is+the+meaning+of+life%3F'; script.id = 'JSONP'; script.type = 'text/javascript'; script.charset = 'utf-8'; // 标签加

随机推荐