10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径

深度优先算法(DFS 算法)是什么?

寻找起始节点与目标节点之间路径的算法,常用于搜索逃出迷宫的路径。主要思想是,从入口开始,依次搜寻周围可能的节点坐标,但不会重复经过同一个节点,且不能通过障碍节点。如果走到某个节点发现无路可走,那么就会回退到上一个节点,重新选择其他路径。直到找到出口,或者退到起点再也无路可走,游戏结束。当然,深度优先算法,只要查找到一条行得通的路径,就会停止搜索;也就是说只要有路可走,深度优先算法就不会回退到上一步。

如果你依然在编程的世界里迷茫,可以加入我们的Python学习扣qun:784758214,看看前辈们是如何学习的!交流经验!自己是一名高级python开发工程师,从基础的python脚本到web开发、爬虫、django、数据挖掘等,零基础到项目实战的资料都有整理。送给每一位python的小伙伴!分享一些学习的方法和需要注意的小细节,点击加入我们的python学习者聚集地

下图是使用 DFS 算法搜寻出来的一条路径:

总结一下:

从起点开始,查询下一步走得通的节点,将这些可能的节点压入堆栈中,已经走过的节点不再尝试。查询完毕之后,从堆栈中取出一个节点,查询该节点周围是否存在走得通的节点。如果不存在可能的节点,就继续从堆栈中取一个节点。重复以上操作,直到当前节点为终点,或者堆栈中再无节点。

定义数据:

  • 起始节点与目标节点
  • 存储节点的堆栈

定义辅助函数

  • 获取下一节点的函数: successor
  • 判断是否为终点的函数: test_goal

首先,我们来定义栈这种数据结构,栈是一种后进先出的数据结构。

因为之后的广度优先搜索会使用到队列,A* 算法会用到优先队列,我们定义了抽象基类,以便后续使用。deque 是双端队列,与内置类型 list 操作类似,但头部与尾部插入和删除操作的时间复杂度均为 O(1)。

# utils.py
from abc import abstractmethod, ABC
from collections import deque
class Base(ABC):
  def __init__(self):
    self._container = deque()
  @abstractmethod
  def push(self, value):
    """push item"""
  @abstractmethod
  def pop(self):
    """pop item"""
  def __len__(self):
    return len(self._container)
  def __repr__(self):
    return f'{type(self).__name__}({list(self._container)})'
class Stack(Base):
  def push(self, value):
    self._container.append(value)
  def pop(self):
    return self._container.pop()

下面我们来定义 dfs 函数。其中,initial 为初始节点, s 为栈,marked 用来记录经过的节点。successor 函数用来搜寻下一个可能的节点,test_goal 函数用来判断该节点是否为目标节点。children 为可能的节点列表,遍历这些节点,将没有走过的节点压入栈中,并做记录。

# find_path.py
from utils import Stack
def dfs(initial, _next = successor, _test = test_goal):
  s: Stack = Stack()
  marked = {initial}
  s.push(initial)
  while s:
    parent: state = s.pop()
    if _test(parent):
      return parent
    children = _next(parent)
    for child in children:
      if child not in marked:
        marked.add(child)
        s.push(child)

接下来,我们使用 DFS 算法寻找迷宫路径,并对搜寻到的迷宫路径进行可视化演示。

首先使用枚举,来表示路径的颜色, EMPTY 为正常节点,BLOCKED 为障碍节点,START 为迷宫入口,END 为迷宫出口,PATH 为搜寻的路径。

from enum import IntEnum
class Cell(IntEnum):
  EMPTY = 255
  BLOCKED = 0
  START = 100
  END = 200
  PATH = 150

接下来,我们来定义迷宫。首先,我们采用 Namedtuple 来定义迷宫每个节点的坐标:

class MazeLocation(NamedTuple):
  row: int
  col: int

首先为了方便确定节点之间的关系,我们在 Maze 类中定义了一个内部类 _Node, 用来记录节点的状态,及节点的父节点。

class _Node:
  def __init__(self, state, parent):
    self.state = state
    self.parent = parent

接着初始化,确定入口与出口的坐标,使用 np.random.choice 函数随机生成迷宫,并标记入口和出口。

def __init__(self, rows: int = 10, cols: int = 10,
       sparse: float = 0.2, seed: int = 365,
       start: MazeLocation = MazeLocation(0, 0),
       end: MazeLocation = MazeLocation(9, 9), *,
       grid: Optional[np.array] = None) -> None:
  np.random.seed(seed)
  self._start: MazeLocation = start
  self._end: MazeLocation = end
  self._grid: np.array = np.random.choice([Cell.BLOCKED, Cell.EMPTY],
                        (rows, cols), p=[sparse, 1 - sparse])
  self._grid[start] = Cell.START
  self._grid[end] = Cell.END

其次是 test_goal 方法,只要该节点坐标与目标节点相即可。

def _test_goal(self, m1: MazeLocation) -> bool:
  return m1 == self._end

再就是 successor 方法,只要上下左右方向的节点不是障碍节点且在边界之内,就纳入考虑范围,加入列表之中。

List[MazeLocation]:
  location: List[MazeLocation] = []
  row, col = self._grid.shape
  if m1.row + 1 < row and self._grid[m1.row + 1, m1.col] != Cell.BLOCKED:
    location.append(MazeLocation(m1.row + 1, m1.col))
  if m1.row - 1 >= 0 and self._grid[m1.row - 1, m1.col] != Cell.BLOCKED:
    location.append(MazeLocation(m1.row - 1, m1.col))
  if m1.col + 1 < col and self._grid[m1.row, m1.col + 1] != Cell.BLOCKED:
    location.append(MazeLocation(m1.row, m1.col + 1))
  if m1.col - 1 >= 0 and self._grid[m1.row, m1.col - 1] != Cell.BLOCKED:
    location.append(MazeLocation(m1.row, m1.col - 1))
  return location

显示路径, pause 为显示图像的间隔,plot 为是否绘图标志。通过目标节点出发,遍历每一个节点的父节点,直到到达初始节点,并绘制路径图。

None:
  if pause <= 0:
    raise ValueError('pause must be more than 0')
  path: Maze._Node = self._search()
  if path is None:
    print('没有找到路径')
    return
  path = path.parent
  while path.parent is not None:
    self._grid[path.state] = Cell.PATH
    if plot:
      self._draw(pause)
    path = path.parent
  print('Path Done')

为了使用 DFS 算法,我们定义了 DepthFirstSearch 类,继承迷宫类。DepthFirstSearch 类重写了基类的 _search 方法,与我们之前定义的 dfs 函数定义相差无几。

class DepthFirstSearch(Maze):
  def _search(self):
    stack: Stack = Stack()
    initial: DepthFirstSearch._Node = self._Node(self._start, None)
    marked: Set[MazeLocation] = {initial.state}
    stack.push(initial)
    while stack:
      parent: DepthFirstSearch._Node = stack.pop()
      state: MazeLocation = parent.state
      if self._test_goal(state):
        return parent
      children: List[MazeLocation] = self._success(state)
      for child in children:
        if child not in marked:
          marked.add(child)
          stack.push(self._Node(child, parent))

总结

以上所述是小编给大家介绍的10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • Python实现的KMeans聚类算法实例分析

    本文实例讲述了Python实现的KMeans聚类算法.分享给大家供大家参考,具体如下: 菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程. 关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题. 一 .关于初始聚类中心的选取 初始聚类中心的选择一般有: (1)随机选取 (2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推. (3)使用层次聚类等算法更新出初始聚类中心 我一开始是使用numpy

  • Python实现的线性回归算法示例【附csv文件下载】

    本文实例讲述了Python实现的线性回归算法.分享给大家供大家参考,具体如下: 用python实现线性回归 Using Python to Implement Line Regression Algorithm 小菜鸟记录学习过程 代码: #encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/09 Project: Using Python to Implement LineRegression Algor

  • Python实现的简单线性回归算法实例分析

    本文实例讲述了Python实现的简单线性回归算法.分享给大家供大家参考,具体如下: 用python实现R的线性模型(lm)中一元线性回归的简单方法,使用R的women示例数据,R的运行结果: > summary(fit) Call: lm(formula = weight ~ height, data = women) Residuals:     Min      1Q  Median      3Q     Max -1.7333 -1.1333 -0.3833  0.7417  3.116

  • Python3对称加密算法AES、DES3实例详解

    本文实例讲述了Python3对称加密算法AES.DES3.分享给大家供大家参考,具体如下: python3.6此库安装方式,需要pip3 install pycryptodome. 如有site-packages中存在crypto.pycrypto,在pip之前,需要pip3 uninstall crypto.pip3 uninstall pycrypto,否则无法安装成功. C:\WINDOWS\system32>pip3 install pycryptodome Collecting pyc

  • Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

    本文实例讲述了Python基于聚类算法实现密度聚类(DBSCAN)计算.分享给大家供大家参考,具体如下: 算法思想 基于密度的聚类算法从样本密度的角度考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇得到最终结果. 几个必要概念: ε-邻域:对于样本集中的xj, 它的ε-邻域为样本集中与它距离小于ε的样本所构成的集合. 核心对象:若xj的ε-邻域中至少包含MinPts个样本,则xj为一个核心对象. 密度直达:若xj位于xi的ε-邻域中,且xi为核心对象,则xj由xi密度直达. 密度可达:若样

  • Python字符串的全排列算法实例详解

    本文实例讲述了Python字符串的全排列算法.分享给大家供大家参考,具体如下: 题目描述 输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba. 输入描述 输入一个字符串,长度不超过9(可能有字符重复),字符只包括大小写字母. 注意有可能重复,因此需要判断 注意list的append方法和list的+方法的区别 append方法在list后面添加元素 +方法在list后面添加l

  • 10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径

    深度优先算法(DFS 算法)是什么? 寻找起始节点与目标节点之间路径的算法,常用于搜索逃出迷宫的路径.主要思想是,从入口开始,依次搜寻周围可能的节点坐标,但不会重复经过同一个节点,且不能通过障碍节点.如果走到某个节点发现无路可走,那么就会回退到上一个节点,重新选择其他路径.直到找到出口,或者退到起点再也无路可走,游戏结束.当然,深度优先算法,只要查找到一条行得通的路径,就会停止搜索:也就是说只要有路可走,深度优先算法就不会回退到上一步. 如果你依然在编程的世界里迷茫,可以加入我们的Python学

  • 10分钟教你用Python实现微信自动回复功能

     01 前言&&效果展示 相信大家都有忙碌的时候,不可能一直守在微信上及时回复消息.但微信又不能像QQ一样设置自动回复.无妨,今天,我们就来用Python实现微信的自动回复功能吧,并且把接收到的消息统一发送到文件助手里面,方便统一查看. 效果如下: 02 环境准备 Python版本:3.6.0 系统平台:Windows 10 X64 IDE:pycharm 相关模块: time模块: itchat模块: 以及一些Python自带的模块. 03 实现原理 其实原理很简单,主要是利用itcha

  • 一分钟教你用Python写一幅春联

    目录 1. 前言 2. 代码中需要导入的模块 3. 下载字模 4. 下载龙凤呈祥背景底图 5. 生成春联 6. 测试样例 总结 1. 前言 春联是中国传统文化中最具内涵的元素之一,它以对仗工整.简洁精巧的文字描绘美好形象,抒发美好愿望,是中国特有的文学形式,是华人们过年的重要习俗.每逢春节期间,无论城市还是农村,家家户户都要精选一副大红春联贴于门上,辞旧迎新,以增加节日的喜庆气氛.据考证,这一习俗起于宋代,盛于明代.有据可查的最早的春联是“三阳始布,四序初开”,始见于莫高窟藏经洞出土的文物中,撰

  • 10分钟教你本地配置多个git ssh连接的方法

    前言 你最近换电脑了吗?还记得如何在本地配置多个 git ssh 连接吗?一般公司用的是自己内网部署的 gitlab 服务器进行代码管理,开发者使用的是公司的用户名和公司的邮箱,而在个人的开源项目中,我们的代码托管于 github,这个时候就需要两个或多个以上的 SSH-Key 去进行登录,方便代码的拉取与推送. 文章大纲 查看所有 ssh key 分别配置 gitlab 内网 和 github 外网 ssh 进行测试 第一步:查看所有 SSH-Key 打开 bash/zsh 终端:执行以下命令

  • 教你用Python matplotlib库制作简单的动画

    matplotlib制作简单的动画 动画即是在一段时间内快速连续的重新绘制图像的过程. matplotlib提供了方法用于处理简单动画的绘制: import matplotlib.animation as ma def update(number): pass # 每隔30毫秒,执行一次update ma.FuncAnimation( mp.gcf(), # 作用域当前窗体 update, # 更新函数的函数名 interval=30 # 每隔30毫秒,执行一次update ) 案例1: 随机生

  • 三分钟时间教你用Python绘制春联

    目录 前言 实现 总结 前言 春联是中国传统文化中最具内涵的元素之一,它以对仗工整.简洁精巧的文字描绘美好形象,抒发美好愿望,是中国特有的文学形式,是华人们过年的重要习俗.每逢春节期间,无论城市还是农村,家家户户都要精选一副大红春联贴于门上,辞旧迎新,以增加节日的喜庆气氛. 据考证,这一习俗起于宋代,盛于明代.有据可查的最早的春联是“三阳始布,四序初开”,始见于莫高窟藏经洞出土的文物中,撰联人为唐人刘丘子,作于开元十一年(公元723年).如今卖春联的景象是这样的: 当今时代的人,大多只是粗通文墨

  • Python实现的matplotlib动画演示之细胞自动机

    目录 ArtistAnimation动画 FuncAnimation动画 随机生命游戏 维基百科上有个有意思的话题叫细胞自动机:https://en.wikipedia.org/wiki/Cellular_automaton 在20世纪70年代,一种名为生命游戏的二维细胞自动机变得广为人知,特别是在早期的计算机界.由约翰 · 康威发明,马丁 · 加德纳在<科学美国人>的一篇文章中推广,其规则如下: Any live cell with fewer than two live neighbour

  • 10分钟学会使用python实现人脸识别(附源码)

    前言 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花的时间. 既然用的是python,那自然少不了包的使用了,在

  • 10分钟用Python快速搭建全文搜索引擎详解流程

    有一个群友在群里问个如何快速搭建一个搜索引擎,在搜索之后我看到了这个 代码所在 Git:https://github.com/asciimoo/searx 官方很贴心,很方便的是已经提供了docker 镜像,基本pull下来就可以很方便的使用了,执行命令 cid=$(sudo docker ps -a | grep searx | awk '{print $1}') echo searx cid is $cid if [ "$cid" != "" ];then su

  • 10张动图学会python循环与递归问题

    图像(包括动图)是传递信息的一种高效方式,往往能增强表象.记忆与思维等方面的反应强度.所谓一图胜千言,说的就是这个道理. 今天为大家整理了十张动图GIFS,有助于认识循环.递归.二分检索等概念的具体运行情况.代码实例以Python语言编写. 一.循环 GIF1:最简单的 while 循环 GIF 2:带 if/else 的循环 二.递归 GIF 3:递归概念的直接演示 GIF 4:递归斐波拉切代码示例 GIF5: 帕斯卡pascals-triangle三角递归动画代码. GIF6:带代码和动画的

随机推荐