python-opencv获取二值图像轮廓及中心点坐标的代码
python-opencv获取二值图像轮廓及中心点坐标代码:
groundtruth = cv2.imread(groundtruth_path)[:, :, 0] h1, w1 = groundtruth.shape contours, cnt = cv2.findContours(groundtruth.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if len(contours) != 1:#轮廓总数 continue M = cv2.moments(contours[0]) # 计算第一条轮廓的各阶矩,字典形式 center_x = int(M["m10"] / M["m00"]) center_y = int(M["m01"] / M["m00"]) image = np.zeros([h1, w1], dtype=groundtruth.dtype) cv2.drawContours(image, contours, 0, 255, -1)#绘制轮廓,填充 cv2.circle(image, (center_x, center_y), 7, 128, -1)#绘制中心点 cv2.imwrite("1.png", image)
以上这篇python-opencv获取二值图像轮廓及中心点坐标的代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
python-opencv在有噪音的情况下提取图像的轮廓实例
对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i
-
opencv python 图像轮廓/检测轮廓/绘制轮廓的方法
图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对
-
Python Opencv实现图像轮廓识别功能
本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th
-
python-opencv获取二值图像轮廓及中心点坐标的代码
python-opencv获取二值图像轮廓及中心点坐标代码: groundtruth = cv2.imread(groundtruth_path)[:, :, 0] h1, w1 = groundtruth.shape contours, cnt = cv2.findContours(groundtruth.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if len(contours) != 1:#轮廓总数 continue M = cv
-
python openCV获取人脸部分并存储功能
本文实例为大家分享了python openCV获取人脸部分并存储的具体代码,供大家参考,具体内容如下 #-*- coding:utf-8 -*- import cv2 import os import time import base64 import numpy as np save_path = 'E:\\opencv\\2018-04-24OpenCv\\RAR\\savetest' faceCascade = cv2.CascadeClassifier( './haarcascade_f
-
Python+OpenCV图像处理——实现轮廓发现
简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def contours_demo(image): dst = cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪 gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) ret, binary = cv.threshold(gray, 0, 25
-
Python OpenCV 图像区域轮廓标记(框选各种小纸条)
学在前面 上篇 OpenCV 博客原计划完成一个 识别银行卡号的项目,但是写的过程中发现,技术储备不足,我无法在下述图片中,提取出卡号区域,也就无法进行后续的识别了,再次意识到了自己技术还不达标,继续学习.完不成,就实现其它学习项目. 轮廓识别实战 先看一下最终实现的效果,针对一张图片(该图片前景色和背景色差异较大),进行轮廓标记. 图片基本处理 import cv2 as cv src = cv.imread("./demo.jpg") gray = cv.cvtColor(src,
-
如何使用Python OpenCV提取物体轮廓详解
通常提取物体的轮廓时,图像都存在噪声,提取效果并不理想.如提取下图的轮廓时, 提取代码: import cv2 img = cv2.imread("mouse.png") cv2.imshow("origin",img) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,binary = cv2.threshold(gray,128,255,cv2.THRESH_BINARY) cv2.imshow("bina
-
Python+OpenCV之图像轮廓详解
目录 1. 图像轮廓 1.1 findContours介绍 1.2 绘制轮廓 1.3 轮廓特征 2. 轮廓近似 2.1 轮廓 2.2 边界矩形 2.3 外界多边形及面积 1. 图像轮廓 1.1 findContours介绍 cv2.findContours(img, mode, method) mode:轮廓检索模式 RETR_EXTERNAL :只检索最外面的轮廓: RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中: RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是
-
python+opencv+caffe+摄像头做目标检测的实例代码
首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持Linux万能驱动兼容V4L2的摄像头, 因为之前用学ARM的时候使用的Smart210,我已经确认我的摄像头是支持的, 我把摄像头插上之後自然就在 /dev 目录下看到多了一个video0的文件, 这个就是摄像头的设备文件了,所以我就没有额外处理驱动的部分 一.检测环境 再来在开始前因为之前按着国嵌的指导手册安
-
Python OpenCV获取视频的方法
之前有文章,使用Android平台的OpenCV接入了视频,控制的目标是手机的摄像头,这是OpenCV的好处,使用OpenCV可以使用跨平台的接口实现相同的功能,减少了平台间移植的困难.正如本文后面,将使用类似的接口,从笔记本的摄像头获取视频,所以,尝试本文代码需要有一台有摄像头的电脑. 不过,需要说明的的是,OpenCV的强项在于图像相关的处理,而不是视频的编解码,所以,不要使用OpenCV做多余的事情,我们使用OpenCV接入视频或者图片的目的,是为了对视频或图片进行处理. 关于Python
-
Python+OpenCV实现实时眼动追踪的示例代码
使用Python+OpenCV实现实时眼动追踪,不需要高端硬件简单摄像头即可实现,效果图如下所示. 项目演示参见:https://www.bilibili.com/video/av75181965/ 项目主程序如下: import sys import cv2 import numpy as np import process from PyQt5.QtCore import QTimer from PyQt5.QtWidgets import QApplication, QMainWindow
随机推荐
- Docker 给运行中的容器设置端口映射的方法
- ExtJS4 动态生成的grid导出为excel示例
- Angular-Ui-Router+ocLazyLoad动态加载脚本示例
- php批量删除数据
- Asp.Net程序目录下文件夹或文件操作导致Session失效的解决方案
- HTML5 Ajax文件上传进度条如何显示
- javascript禁止访客复制网页内容的实现代码
- 原生Javascript封装的一个AJAX函数分享
- js使用onmousemove和onmouseout获取鼠标坐标的方法
- 不可忽视的 .NET 应用5大性能问题
- asp 数据库连接函数代码
- 基于条件变量的消息队列 说明介绍
- mysql备份与恢复详解
- 用php实现像JSP,ASP里Application那样的全局变量
- java制作仿微信录制小视频控件
- jQuery实现鼠标经过提示信息的地图热点效果
- node.js实现多图片上传实例
- js 获取计算后的样式写法及注意事项
- php session_start()出错原因分析及解决方法
- 在centos5下安装配置VNC的具体操作步骤