RateLimit-使用guava来做接口限流代码示例

本文主要研究的是RateLimit-使用guava来做接口限流的相关内容,具体如下。

一、问题描述

  某天A君突然发现自己的接口请求量突然涨到之前的10倍,没多久该接口几乎不可使用,并引发连锁反应导致整个系统崩溃。如何应对这种情况呢?生活给了我们答案:比如老式电闸都安装了保险丝,一旦有人使用超大功率的设备,保险丝就会烧断以保护各个电器不被强电流给烧坏。同理我们的接口也需要安装上“保险丝”,以防止非预期的请求对系统压力过大而引起的系统瘫痪,当流量过大时,可以采取拒绝或者引流等机制。

二、常用的限流算法

常用的限流算法有两种:漏桶算法和令牌桶算法。

漏桶算法思路很简单,请求先进入到漏桶里,漏桶以一定的速度出水,当水请求过大会直接溢出,可以看出漏桶算法能强行限制数据的传输速率。

图1 漏桶算法示意图

对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输。这时候漏桶算法可能就不合适了,令牌桶算法更为适合。如图2所示,令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。

图2 令牌桶算法示意图

三、限流工具类RateLimiter

  google开源工具包guava提供了限流工具类RateLimiter,该类基于“令牌桶算法”,非常方便使用。该类的接口具体的使用请参考:RateLimiter使用实践

RateLimiter 使用Demo

package ratelimite;
import com.google.common.util.concurrent.RateLimiter;
public class RateLimiterDemo {
	public static void main(String[] args) {
		testNoRateLimiter();
		testWithRateLimiter();
	}
	public static void testNoRateLimiter() {
		long start = System.currentTimeMillis();
		for (int i = 0; i < 10; i++) {
			System.out.println("call execute.." + i);
		}
		long end = System.currentTimeMillis();
		System.out.println(end - start);
	}
	public static void testWithRateLimiter() {
		long start = System.currentTimeMillis();
		RateLimiter limiter = RateLimiter.create(10.0);
		// 每秒不超过10个任务被提交
		for (int i = 0; i < 10; i++) {
			limiter.acquire();
			// 请求RateLimiter, 超过permits会被阻塞
			System.out.println("call execute.." + i);
		}
		long end = System.currentTimeMillis();
		System.out.println(end - start);
	}
}

四 Guava并发:ListenableFuture与RateLimiter示例

概念

ListenableFuture顾名思义就是可以监听的Future,它是对java原生Future的扩展增强。我们知道Future表示一个异步计算任务,当任务完成时可以得到计算结果。如果我们希望一旦计算完成就拿到结果展示给用户或者做另外的计算,就必须使用另一个线程不断的查询计算状态。这样做,代码复杂,而且效率低下。使用ListenableFuture Guava帮我们检测Future是否完成了,如果完成就自动调用回调函数,这样可以减少并发程序的复杂度。

推荐使用第二种方法,因为第二种方法可以直接得到Future的返回值,或者处理错误情况。本质上第二种方法是通过调动第一种方法实现的,做了进一步的封装。

另外ListenableFuture还有其他几种内置实现:

SettableFuture:不需要实现一个方法来计算返回值,而只需要返回一个固定值来做为返回值,可以通过程序设置此Future的返回值或者异常信息

CheckedFuture: 这是一个继承自ListenableFuture接口,他提供了checkedGet()方法,此方法在Future执行发生异常时,可以抛出指定类型的异常。

RateLimiter类似于JDK的信号量Semphore,他用来限制对资源并发访问的线程数,本文介绍RateLimiter使用

代码示例

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import com.google.common.util.concurrent.FutureCallback;
import com.google.common.util.concurrent.Futures;
import com.google.common.util.concurrent.ListenableFuture;
import com.google.common.util.concurrent.ListeningExecutorService;
import com.google.common.util.concurrent.MoreExecutors;
import com.google.common.util.concurrent.RateLimiter;
public class ListenableFutureDemo {
	public static void main(String[] args) {
		testRateLimiter();
		testListenableFuture();
	}
	/**
   * RateLimiter类似于JDK的信号量Semphore,他用来限制对资源并发访问的线程数
   */
	public static void testRateLimiter() {
		ListeningExecutorService executorService = MoreExecutors
		        .listeningDecorator(Executors.newCachedThreadPool());
		RateLimiter limiter = RateLimiter.create(5.0);
		// 每秒不超过4个任务被提交
		for (int i = 0; i < 10; i++) {
			limiter.acquire();
			// 请求RateLimiter, 超过permits会被阻塞
			final ListenableFuture<Integer> listenableFuture = executorService
			          .submit(new Task("is "+ i));
		}
	}
	public static void testListenableFuture() {
		ListeningExecutorService executorService = MoreExecutors
		        .listeningDecorator(Executors.newCachedThreadPool());
		final ListenableFuture<Integer> listenableFuture = executorService
		        .submit(new Task("testListenableFuture"));
		//同步获取调用结果
		try {
			System.out.println(listenableFuture.get());
		}
		catch (InterruptedException e1) {
			e1.printStackTrace();
		}
		catch (ExecutionException e1) {
			e1.printStackTrace();
		}
		//第一种方式
		listenableFuture.addListener(new Runnable() {
			@Override
			      public void run() {
				try {
					System.out.println("get listenable future's result "
					              + listenableFuture.get());
				}
				catch (InterruptedException e) {
					e.printStackTrace();
				}
				catch (ExecutionException e) {
					e.printStackTrace();
				}
			}
		}
		, executorService);
		//第二种方式
		Futures.addCallback(listenableFuture, new FutureCallback<Integer>() {
			@Override
			      public void onSuccess(Integer result) {
				System.out
				            .println("get listenable future's result with callback "
				                + result);
			}
			@Override
			      public void onFailure(Throwable t) {
				t.printStackTrace();
			}
		}
		);
	}
}
class Task implements Callable<Integer> {
	String str;
	public Task(String str){
		this.str = str;
	}
	@Override
	  public Integer call() throws Exception {
		System.out.println("call execute.." + str);
		TimeUnit.SECONDS.sleep(1);
		return 7;
	}
}

Guava版本

<dependency>
      <groupId>com.google.guava</groupId>
      <artifactId>guava</artifactId>
      <version>14.0.1</version>
    </dependency>

总结

以上就是本文关于RateLimit-使用guava来做接口限流代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

您可能感兴趣的文章:

  • Java编程guava RateLimiter实例解析
(0)

相关推荐

  • Java编程guava RateLimiter实例解析

    本文主要研究的是Java编程guava RateLimiter的相关内容,具体如下. 令牌桶算法(token bucket algorithm) 场景1 在流量监管中的应用 约定访问速率(CAR)是流量监管常用技术之一,可以应用在端口进和出方向,一般应用在入方向,它的监管原理如图1所示. a. 按特定的速率向令牌桶投放令牌 b. 根据预设的匹配规则先对报文进行分类,不符合匹配规则的报文不需要经过令牌桶的处理,直接发送: c. 符合匹配规则的报文,则需要令牌桶进行处理.当桶中有足够的令牌则报文可以

  • RateLimit-使用guava来做接口限流代码示例

    本文主要研究的是RateLimit-使用guava来做接口限流的相关内容,具体如下. 一.问题描述 某天A君突然发现自己的接口请求量突然涨到之前的10倍,没多久该接口几乎不可使用,并引发连锁反应导致整个系统崩溃.如何应对这种情况呢?生活给了我们答案:比如老式电闸都安装了保险丝,一旦有人使用超大功率的设备,保险丝就会烧断以保护各个电器不被强电流给烧坏.同理我们的接口也需要安装上"保险丝",以防止非预期的请求对系统压力过大而引起的系统瘫痪,当流量过大时,可以采取拒绝或者引流等机制. 二.常

  • Springboot+Redis实现API接口限流的示例代码

    添加Redis的jar包. <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> 在application.yml中配置redis spring: ## Redis redis: database: 0 host: 127.0.0.1 p

  • java单机接口限流处理方案详解

    对单机服务做接口限流的处理方案 简单说就是设定某个接口一定时间只接受固定次数的请求,比如/add接口1秒最多接收100次请求,多的直接拒绝,这个问题很常见,场景也好理解,直接上代码: /** * 单机限流 */ @Slf4j public class FlowLimit { //接口限流上限值和限流时间缓存 private static Cache<String, AtomicLong> localCache = CacheBuilder.newBuilder().maximumSize(10

  • Spring Boot接口限流的常用算法及特点

    前言 在一个高并发系统中对流量的把控是非常重要的,当巨大的流量直接请求到我们的服务器上没多久就可能造成接口不可用,不处理的话甚至会造成整个应用不可用. 那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了.通过限流,我们可以很好地控制系统的qps,从而达到保护系统的目的.本篇文章将会介绍一下常用的限流算法以及他们各自的特点. 算法介绍 计数器法 计数器法是限流算法里最简单也是最容易实现的一种算法.比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个.

  • Java实现接口限流方案

    本文实例为大家分享了Java实现接口限流方案的具体代码,供大家参考,具体内容如下 RateLimiter Google开源工具包Guava提供了限流工具类RateLimiter,基于令牌桶算法实现. 1.maven依赖: <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>27.1-jre</versio

  • Spring Cloud Alibaba使用Sentinel实现接口限流

    最近管点闲事浪费了不少时间,感谢网友 libinwalan 的留言提醒.及时纠正路线,继续跟大家一起学习Spring Cloud Alibaba. Nacos作为注册中心和配置中心的基础教程,到这里先告一段落,后续与其他结合的内容等讲到的时候再一起拿出来说,不然内容会有点跳跃.接下来我们就来一起学习一下Spring Cloud Alibaba下的另外一个重要组件:Sentinel. Sentinel是什么 Sentinel的官方标题是:分布式系统的流量防卫兵.从名字上来看,很容易就能猜到它是用来

  • SpringBoot服务上实现接口限流的方法

    Sentinel是阿里巴巴开源的限流器熔断器,并且带有可视化操作界面. 在日常开发中,限流功能时常被使用,用于对某些接口进行限流熔断,譬如限制单位时间内接口访问次数:或者按照某种规则进行限流,如限制ip的单位时间访问次数等. 之前我们已经讲过接口限流的工具类ratelimter可以实现令牌桶的限流,很明显sentinel的功能更为全面和完善.来看一下sentinel的简介: https://github.com/spring-cloud-incubator/spring-cloud-alibab

  • SpringBoot基于Sentinel在服务上实现接口限流

    Sentinel是阿里巴巴开源的限流器熔断器,并且带有可视化操作界面. 在日常开发中,限流功能时常被使用,用于对某些接口进行限流熔断,譬如限制单位时间内接口访问次数:或者按照某种规则进行限流,如限制ip的单位时间访问次数等. 之前我们已经讲过接口限流的工具类ratelimter可以实现令牌桶的限流,很明显sentinel的功能更为全面和完善.来看一下sentinel的简介: https://github.com/spring-cloud-incubator/spring-cloud-alibab

  • 详解Springboot集成sentinel实现接口限流入门

    Sentinel是阿里巴巴开源的限流器熔断器,并且带有可视化操作界面. 在日常开发中,限流功能时常被使用,用于对某些接口进行限流熔断,譬如限制单位时间内接口访问次数:或者按照某种规则进行限流,如限制ip的单位时间访问次数等. 之前我们已经讲过接口限流的工具类ratelimter可以实现令牌桶的限流,很明显sentinel的功能更为全面和完善.来看一下sentinel的简介: https://github.com/spring-cloud-incubator/spring-cloud-alibab

  • 使用AOP+redis+lua做方法限流的实现

    目录 需求 实现方式 源码 Limit 注解 LimitKey LimitType RedisLimiterHelper LimitInterceptor TestService 需求 公司里使用OneByOne的方式删除数据,为了防止一段时间内删除数据过多,让我这边做一个接口限流,超过一定阈值后报异常,终止删除操作. 实现方式 创建自定义注解 @limit 让使用者在需要的地方配置 count(一定时间内最多访问次数). period(给定的时间范围),也就是访问频率.然后通过LimitInt

随机推荐