使用Python读取大文件的方法

背景

最近处理文本文档时(文件约2GB大小),出现memoryError错误和文件读取太慢的问题,后来找到了两种比较快Large File Reading 的方法,本文将介绍这两种读取方法。

准备工作

  我们谈到“文本处理”时,我们通常是指处理的内容。Python 将文本文件的内容读入可以操作的字符串变量非常容易。文件对象提供了三个“读”方法: .read()、.readline() 和 .readlines()。每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read() 每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而.read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。下面是read()方法示例:

try:
f = open('/path/to/file', 'r')
print f.read()
finally:
if f:
f.close() 

  调用read()会一次性读取文件的全部内容,如果文件有10G,内存就爆了,所以,要保险起见,可以反复调用read(size)方法,每次最多读取size个字节的内容。另外,调用readline()可以每次读取一行内容,调用readlines()一次读取所有内容并按行返回list。因此,要根据需要决定怎么调用。

  如果文件很小,read()一次性读取最方便;如果不能确定文件大小,反复调用read(size)比较保险;如果是配置文件,调用readlines()最方便:

for line in f.readlines():
process(line) #

  

分块读取

处理大文件是很容易想到的就是将大文件分割成若干小文件处理,处理完每个小文件后释放该部分内存。这里用了iter 和 yield:

def read_in_chunks(filePath, chunk_size=1024*1024):
"""
Lazy function (generator) to read a file piece by piece.
Default chunk size: 1M
You can set your own chunk size
"""
file_object = open(filePath)
while True:
chunk_data = file_object.read(chunk_size)
if not chunk_data:
break
yield chunk_data
if __name__ == "__main__":
filePath = './path/filename'
for chunk in read_in_chunks(filePath):
process(chunk) # <do something with chunk>

使用With open()

with语句打开和关闭文件,包括抛出一个内部块异常。for line in f文件对象f视为一个迭代器,会自动的采用缓冲IO和内存管理,所以你不必担心大文件。

代码如下:

#If the file is line based
with open(...) as f:
  for line in f:
    process(line) # <do something with line>

优化

面对百万行的大型数据使用with open 是没有问题的,但是这里面参数的不同也会导致不同的效率。经过测试发先参数为"rb"时的效率是"r"的6倍。由此可知二进制读取依然是最快的模式。

with open(filename,"rb") as f:
  for fLine in f:
    pass 

测试结果:rb方式最快,100w行全遍历2.9秒。基本能满足中大型文件处理效率需求。如果从rb(二级制读取)读取改为r(读取模式),慢5-6倍。

结论

  在使用python进行大文件读取时,应该让系统来处理,使用最简单的方式,交给解释器,就管好自己的工作就行了。同时根据不同的需求可以选择不同的读取参数进一步获得更高的性能。

您可能感兴趣的文章:

  • python 删除大文件中的某一行(最有效率的方法)
  • python:socket传输大文件示例
  • Python按行读取文件的实现方法【小文件和大文件读取】
  • Python实现压缩与解压gzip大文件的方法
  • python简单读取大文件的方法
  • Python多进程分块读取超大文件的方法
  • Python实现大文件排序的方法
(0)

相关推荐

  • Python按行读取文件的实现方法【小文件和大文件读取】

    本文实例讲述了Python按行读取文件的实现方法.分享给大家供大家参考,具体如下: 小文件: #coding=utf-8 #author: walker #date: 2013-12-30 #function: 按行读取小文件 all_lines = [] try: file = open('txt.txt', 'r') all_lines = file.readlines() except IOError as err: print('File error: ' + str(err)) fin

  • python简单读取大文件的方法

    本文实例讲述了python简单读取大文件的方法.分享给大家供大家参考,具体如下: Python读取大文件(GB级别)采用的办法很简单: with open(...) as f: for line in f: <do something with line> 例如: with open(filepath,'r') as infile: for line in infile: print line 一切都交给python解释器处理,读取效率很高,且占用资源少. stackoverflow参考链接:

  • python:socket传输大文件示例

    文件可以传输,但是对比传输前后的文件:socket_test.txt,末尾有一些不一致服务端代码: #!/usr/bin/python # -*- coding: utf-8 -*- import sys reload(sys) sys.setdefaultencoding("utf-8") import time ''' 等待连接 等待发送文件 读取数据 写入文件并且保存 等待连接 ''' import socket import threading import time impo

  • Python实现压缩与解压gzip大文件的方法

    本文实例讲述了Python实现压缩与解压gzip大文件的方法.分享给大家供大家参考,具体如下: #encoding=utf-8 #author: walker #date: 2015-10-26 #summary: 测试gzip压缩/解压文件 import gzip BufSize = 1024*8 def gZipFile(src, dst): fin = open(src, 'rb') fout = gzip.open(dst, 'wb') in2out(fin, fout) def gun

  • python 删除大文件中的某一行(最有效率的方法)

    用 python 处理一个文本时,想要删除其中中某一行,常规的思路是先把文件读入内存,在内存中修改后再写入源文件. 但如果要处理一个很大的文本,比如GB级别的文本时,这种方法不仅需要占用很大内存,而且一次性读入内存时耗费时间,还有可能导致内存溢出. 所以,需要用另外一个思路去处理. 我们可以使用 open() 方法把需要修改的文件打开为两个文件,然后逐行读入内存,找到需要删除的行时,用后面的行逐一覆盖.实现方式见以下代码. with open('file.txt', 'r') as old_fi

  • Python实现大文件排序的方法

    本文实例讲述了Python实现大文件排序的方法.分享给大家供大家参考.具体实现方法如下: import gzip import os from multiprocessing import Process, Queue, Pipe, current_process, freeze_support from datetime import datetime def sort_worker(input,output): while True: lines = input.get().splitlin

  • Python多进程分块读取超大文件的方法

    本文实例讲述了Python多进程分块读取超大文件的方法.分享给大家供大家参考,具体如下: 读取超大的文本文件,使用多进程分块读取,将每一块单独输出成文件 # -*- coding: GBK -*- import urlparse import datetime import os from multiprocessing import Process,Queue,Array,RLock """ 多进程分块读取文件 """ WORKERS = 4

  • 使用Python读取大文件的方法

    背景 最近处理文本文档时(文件约2GB大小),出现memoryError错误和文件读取太慢的问题,后来找到了两种比较快Large File Reading 的方法,本文将介绍这两种读取方法. 准备工作 我们谈到"文本处理"时,我们通常是指处理的内容.Python 将文本文件的内容读入可以操作的字符串变量非常容易.文件对象提供了三个"读"方法: .read()..readline() 和 .readlines().每种方法可以接受一个变量以限制每次读取的数据量,但它们

  • 强悍的Python读取大文件的解决方案

    Python 环境下文件的读取问题,请参见拙文 Python基础之文件读取的讲解 这是一道著名的 Python 面试题,考察的问题是,Python 读取大文件和一般规模的文件时的区别,也即哪些接口不适合读取大文件. 1. read() 接口的问题 f = open(filename, 'rb') f.read() 我们来读取 1 个 nginx 的日至文件,规模为 3Gb 大小.read() 方法执行的操作,是一次性全部读入内存,显然会造成: MemoryError ... 也即会发生内存溢出.

  • php 使用file_get_contents读取大文件的方法

    当我们遇到文本文件体积很大时,比如超过几十M甚至几百M几G的大文件,用记事本或者其它编辑器打开往往不能成功,因为他们都需要把文件内容全部放到内存里面,这时就会发生内存溢出而打开错误,遇到这种情况我们可以使用PHP的文件读取函数file_get_contents()进行分段读取. 函数说明 string file_get_contents ( string $filename [, bool $use_include_path [, resource $context [, int $offset

  • 简单了解Python读取大文件代码实例

    这篇文章主要介绍了简单了解Python读取大文件代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 通常对于大文件读取及处理,不可能直接加载到内存中,因此进行分批次小量读取及处理 I.第一种读取方式 一行一行的读取,速度较慢 def read_line(path): with open(path, 'r', encoding='utf-8') as fout: line = fout.readline() while line: line

  • python读取大文件越来越慢的原因与解决

    背景: 今天同事写代码,用python读取一个四五百兆的文件,然后做一串逻辑上很直观的处理.结果处理了一天还没有出来结果.问题出在哪里呢? 解决: 1. 同事打印了在不同时间点的时间,在需要的地方插入如下代码: print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) 发现一个规律,执行速度到后面时间越来越长,也就是处理速度越来越慢. 2. 为什么会越来越慢呢? 1)可能原因1,GC 的问题,有篇文章里面写,pyth

  • python读取各种文件数据方法解析

    python读取.txt(.log)文件 ..xml 文件 .excel文件数据,并将数据类型转换为需要的类型,添加到list中详解 1.读取文本文件数据(.txt结尾的文件)或日志文件(.log结尾的文件) 以下是文件中的内容,文件名为data.txt(与data.log内容相同),且处理方式相同,调用时改个名称就可以了: 以下是python实现代码: # -*- coding:gb2312 -*- import json def read_txt_high(filename): with o

  • 实例讲解python读取各种文件的方法

    目录 1.yaml文件 2.CSV文件 3.ini文件 总结 1.yaml文件 # house.yaml-------------------------------------------------------------------------- # 1."数据结构"可以用类似大纲的"缩排"方式呈现 # 2.连续的项目通过减号"-"来表示,也可以用逗号来分割 # 3.key/value对用冒号":"来分隔 # 4.数组用

  • Python文本处理之按行处理大文件的方法

    以行的形式读出一个文件最简单的方式是使用文件对象的readline().readlines()和xreadlines()方法. Python2.2+为这种频繁的操作提供了一个简化的语法--让文件对象自身在行上高效迭代(这种迭代是严格的向前的). 为了读取整个文件,可能要使用read()方法,且使用字符串的split()来将它拆分WEIGHT行或其他块. 下面是一些例子: >>> for line in open('chap1.txt'): # Python 2.2+ ... # proc

  • python实现读取大文件并逐行写入另外一个文件

    <pre name="code" class="python">creazy.txt文件有4G,逐行读取其内容并写入monday.txt文件里. def creazyRead(): ''''' with open("e:creazy.txt","r") as cr: for line in cr: print line ''' ms = open("e:creazy.txt") for line

随机推荐