理解python中生成器用法

生成器(generator)概念

生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束。

生成器语法

生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()
生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存。

>>> gen = (x**2 for x in range(5))
>>> gen
<generator object <genexpr> at 0x0000000002FB7B40>
>>> for g in gen:
...  print(g, end='-')
...
0-1-4-9-16-
>>> for x in [0,1,2,3,4,5]:
...  print(x, end='-')
...
0-1-2-3-4-5-

生成器函数: 在函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是生成器函数。

但是生成器函数可以生产一个无线的序列,这样列表根本没有办法进行处理。

yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator。

下面为一个可以无穷生产奇数的生成器函数。

def
odd():
n=1
while
True:
yield
n
n+=2
odd_num
=
odd()
count
=
0
for
o
in
odd_num:
if
count
>=5:
break
print(o)
count
+=1

当然通过手动编写迭代器可以实现类似的效果,只不过生成器更加直观易懂

class Iter:
  def __init__(self):
    self.start=-1
  def __iter__(self):
    return self
  def __next__(self):
    self.start +=2
    return self.start
I = Iter()
for count in range(5):
  print(next(I))

题外话: 生成器是包含有__iter()和next__()方法的,所以可以直接使用for来迭代,而没有包含StopIteration的自编Iter来只能通过手动循环来迭代

>>>
from
collections
import
Iterable
>>>
from
collections
import
Iterator
>>>
isinstance(odd_num,
Iterable)
True
>>>
isinstance(odd_num,
Iterator)
True
>>>
iter(odd_num)
is
odd_num
True
>>>
help(odd_num)
Help
on
generator
object:
odd
=
class
generator(object)
| Methods
defined
here:
|
| __iter__(self,
/)
|   Implement
iter(self).
|
| __next__(self,
/)
|   Implement
next(self).
......

到上面的结果,现在你可以很有信心的按照Iterator的方式进行循环了吧!

在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 与 return

在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;

>>> def g1():
...   yield 1
...
>>> g=g1()
>>> next(g)  #第一次调用next(g)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。
1
>>> next(g)  #程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常。
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

>>>
def
g2():
...
yield
'a'
...
return
...
yield
'b'
...
>>>
g=g2()
>>>
next(g)  #程序停留在执行完yield
 'a'语句后的位置。
'a'
>>>
next(g)  #程序发现下一条语句是return,所以抛出StopIteration异常,这样yield
 'b'语句永远也不会执行。
Traceback
(most
recent
call
last):
 File
"<stdin>",
line
1,
in
<module>
StopIteration

如果在return后返回一个值,那么这个值为StopIteration异常的说明,不是程序的返回值。

生成器没有办法使用return来返回值。

>>> def g3():
...   yield 'hello'
...   return 'world'
...
>>> g=g3()
>>> next(g)
'hello'
>>> next(g)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration: world

生成器支持的方法

>>>
help(odd_num)
Help
on
generator
object:
odd
=
class
generator(object)
| Methods
defined
here:
......
| close(...)
|   close()
->
raise
GeneratorExit
inside
generator.
|
| send(...)
|   send(arg)
->
send
'arg'
into
generator,
|   return
next
yielded
value
or
raise
StopIteration.
|
| throw(...)
|   throw(typ[,val[,tb]])
->
raise
exception
in
generator,
|   return
next
yielded
value
or
raise
StopIteration.
......

close()

手动关闭生成器函数,后面的调用会直接返回StopIteration异常。

>>> def g4():
...   yield 1
...   yield 2
...   yield 3
...
>>> g=g4()
>>> next(g)
1
>>> g.close()
>>> next(g)  #关闭后,yield 2和yield 3语句将不再起作用
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

send()

生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。

这是生成器函数最难理解的地方,也是最重要的地方,实现后面我会讲到的协程就全靠它了。

def
gen():
  value=0
  while
True:
    receive=yield
value
    if
receive=='e':
      break
    value
=
'got: %s'
%
receive
g=gen()
print(g.send(None))
print(g.send('aaa'))
print(g.send(3))
print(g.send('e'))

执行流程:

通过g.send(None)或者next(g)可以启动生成器函数,并执行到第一个yield语句结束的位置。此时,执行完了yield语句,但是没有给receive赋值。yield value会输出初始值0注意:在启动生成器函数时只能send(None),如果试图输入其它的值都会得到错误提示信息。

通过g.send(‘aaa'),会传入aaa,并赋值给receive,然后计算出value的值,并回到while头部,执行yield value语句有停止。此时yield value会输出”got: aaa”,然后挂起。

通过g.send(3),会重复第2步,最后输出结果为”got: 3″

当我们g.send(‘e')时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。

最后的执行结果如下:

0
got: aaa
got: 3
Traceback (most recent call last):
File "h.py", line 14, in <module>
 print(g.send('e'))
StopIteration

throw()

用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。

throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。

def
gen():
  while
True:
    try:
      yield
'normal value'
      yield
'normal value 2'
      print('here')
    except
ValueError:
      print('we
 got ValueError here')
    except
TypeError:
      break
g=gen()
print(next(g))
print(g.throw(ValueError))
print(next(g))
print(g.throw(TypeError))

输出结果为:

normal value
we got ValueError here
normal value
normal value 2
Traceback (most recent call last):
 File "h.py", line 15, in <module>
  print(g.throw(TypeError))
StopIteration

解释:

print(next(g)):会输出normal value,并停留在yield ‘normal value 2'之前。

由于执行了g.throw(ValueError),所以会跳过所有后续的try语句,也就是说yield ‘normal value 2'不会被执行,然后进入到except语句,打印出we got ValueError here。然后再次进入到while语句部分,消耗一个yield,所以会输出normal value。

print(next(g)),会执行yield ‘normal value 2'语句,并停留在执行完该语句后的位置。

g.throw(TypeError):会跳出try语句,从而print(‘here')不会被执行,然后执行break语句,跳出while循环,然后到达程序结尾,所以跑出StopIteration异常。

下面给出一个综合例子,用来把一个多维列表展开,或者说扁平化多维列表)

def
flatten(nested):
  try:
    #如果是字符串,那么手动抛出TypeError。
    if
isinstance(nested,
str):
      raise
TypeError
    for
sublist
in
nested:
      #yield
 flatten(sublist)
      for
element
in
flatten(sublist):
        #yield
 element
        print('got:',
element)
  except
TypeError:
    #print('here')
    yield
nested
L=['aaadf',[1,2,3],2,4,[5,[6,[8,[9]],'ddf'],7]]
for
num
in
flatten(L):
  print(num)

如果理解起来有点困难,那么把print语句的注释打开在进行查看就比较明了了。

总结

按照鸭子模型理论,生成器就是一种迭代器,可以使用for进行迭代。

第一次执行next(generator)时,会执行完yield语句后程序进行挂起,所有的参数和状态会进行保存。再一次执行next(generator)时,会从挂起的状态开始往后执行。在遇到程序的结尾或者遇到StopIteration时,循环结束。

可以通过generator.send(arg)来传入参数,这是协程模型。

可以通过generator.throw(exception)来传入一个异常。throw语句会消耗掉一个yield。可以通过generator.close()来手动关闭生成器。

next()等价于send(None)

(0)

相关推荐

  • 解析Python中的生成器及其与迭代器的差异

    生成器 生成器是一种迭代器,是一种特殊的函数,使用yield操作将函数构造成迭代器.普通的函数有一个入口,有一个返回值:当函数被调用时,从入口开始执行,结束时返回相应的返回值.生成器定义的函数,有多个入口和多个返回值:对生成器执行next()操作,进行生成器的入口开始执行代码,yield操作向调用者返回一个值,并将函数挂起:挂起时,函数执行的环境和参数被保存下来:对生成器执行另一个next()操作时,参数从挂起状态被重新调用,进入上次挂起的执行环境继续下面的操作,到下一个yield操作时重复上面

  • Python2随机数列生成器简单实例

    本文实例讲述了Python2随机数列生成器.分享给大家供大家参考,具体如下: #filename:randNumber.py import random while True: try: row=int(raw_input('Enter the rows:')) cols=int(raw_input('then Enter the cols:')) minNum=int(raw_input('then Enter the minNumber:')) maxNum=int(raw_input('t

  • Python 迭代器与生成器实例详解

    Python 迭代器与生成器实例详解 一.如何实现可迭代对象和迭代器对象 1.由可迭代对象得到迭代器对象 例如l就是可迭代对象,iter(l)是迭代器对象 In [1]: l = [1,2,3,4] In [2]: l.__iter__ Out[2]: <method-wrapper '__iter__' of list object at 0x000000000426C7C8> In [3]: t = iter(l) In [4]: t.next() Out[4]: 1 In [5]: t.

  • Python 中迭代器与生成器实例详解

    Python 中迭代器与生成器实例详解 本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下: 1.手动遍历迭代器 应用场景:想遍历一个可迭代对象中的所有元素,但是不想用for循环 解决方案:使用next()函数,并捕获StopIteration异常 def manual_iter(): with open('/etc/passwd') as f: try: while True: line=next(f) if line is None: br

  • 浅谈Python生成器generator之next和send的运行流程(详解)

    对于普通的生成器,第一个next调用,相当于启动生成器,会从生成器函数的第一行代码开始执行,直到第一次执行完yield语句(第4行)后,跳出生成器函数. 然后第二个next调用,进入生成器函数后,从yield语句的下一句语句(第5行)开始执行,然后重新运行到yield语句,执行后,跳出生成器函数,后面再次调用next,依次类推. 下面是一个列子: def consumer(): r = 'here' for i in xrange(3): yield r r = '200 OK'+ str(i)

  • python 生成器协程运算实例

    一.yield运行方式 我们定义一个如下的生成器: def put_on(name): print("Hi {}, 货物来了,准备搬到仓库!".format(name)) while True: goods = yield print("货物[%s]已经被%s搬进仓库了."%(goods,name)) p = put_on("bigberg") #输出 G:\python\install\python.exe G:/python/untitled

  • python 生成器生成杨辉三角的方法(必看)

    用Python写趣味程序感觉屌屌的,停不下来 #生成器生成展示杨辉三角 #原理是在一个2维数组里展示杨辉三角,空的地方用0,输出时,转化为' ' def yang(line): n,leng=0,2*line - 1 f_list = list(range(leng+2)) #预先分配,insert初始胡会拖慢速度,最底下一行,左右也有1个空格 #全部初始化为0 for i,v in enumerate(f_list): f_list[v] = 0 ZEROLIST = f_list[:] #预

  • Python中的迭代器与生成器高级用法解析

    迭代器 迭代器是依附于迭代协议的对象--基本意味它有一个next方法(method),当调用时,返回序列中的下一个项目.当无项目可返回时,引发(raise)StopIteration异常. 迭代对象允许一次循环.它保留单次迭代的状态(位置),或从另一个角度讲,每次循环序列都需要一个迭代对象.这意味我们可以同时迭代同一个序列不只一次.将迭代逻辑和序列分离使我们有更多的迭代方式. 调用一个容器(container)的__iter__方法创建迭代对象是掌握迭代器最直接的方式.iter函数为我们节约一些

  • 老生常谈Python之装饰器、迭代器和生成器

    在学习python的时候,三大"名器"对没有其他语言编程经验的人来说,应该算是一个小难点,本次博客就博主自己对装饰器.迭代器和生成器理解进行解释. 为什么要使用装饰器 什么是装饰器?"装饰"从字面意思来谁就是对特定的建筑物内按照一定的思路和风格进行美化的一种行为,所谓"器"就是工具,对于python来说装饰器就是能够在不修改原始的代码情况下给其添加新的功能,比如一款软件上线之后,我们需要在不修改源代码和不修改被调用的方式的情况下还能为期添加新的功

  • 理解python中生成器用法

    生成器(generator)概念 生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束. 生成器语法 生成器表达式: 通列表解析语法,只不过把列表解析的[]换成() 生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存. >>> gen = (x**2 for x in range(5)) >>> gen <generator object <

  • 全面理解Python中self的用法

    刚开始学习Python的类写法的时候觉得很是麻烦,为什么定义时需要而调用时又不需要,为什么不能内部简化从而减少我们敲击键盘的次数?你看完这篇文章后就会明白所有的疑问. self代表类的实例,而非类. 实例来说明: class Test: def prt(self): print(self) print(self.__class__) t = Test() t.prt() 执行结果如下 <__main__.Test object at 0x000000000284E080> <class

  • 详解python中@的用法

    python中@的用法 @是一个装饰器,针对函数,起调用传参的作用. 有修饰和被修饰的区别,'@function'作为一个装饰器,用来修饰紧跟着的函数(可以是另一个装饰器,也可以是函数定义). 代码1 def funA(desA): print("It's funA") def funB(desB): print("It's funB") @funA def funC(): print("It's funC") 结果1 It's funA 分析1

  • python中注释用法简单示例

    目录 python中注释 注释描述 注释截图: 1.单行注释 : 2.多行注释: 3.文档注释 补充:注释程序 总结 python中注释 在python中的注释一般分为单行注释.多行注释以及文档注释. 注释描述 在实际开发过程中,有效的代码注释不仅可以提升个人的工作效率,快速了解自己的程序情况,在团队协作开发过程中可以更加方便地让同事学习和调用你的代码.单行注释.多行注释顾名思义用于注释单行和多行.文档注释常用于注释开发过程引入的文档. #注释具体操作: 提示:这里填写问题的分析: 1.单行注释

  • 深入理解python中函数传递参数是值传递还是引用传递

    目前网络上大部分博客的结论都是这样的: Python不允许程序员选择采用传值还是传 引用.Python参数传递采用的肯定是"传对象引用"的方式.实际上,这种方式相当于传值和传引用的一种综合.如果函数收到的是一个可变对象(比如字典 或者列表)的引用,就能修改对象的原始值--相当于通过"传引用"来传递对象.如果函数收到的是一个不可变对象(比如数字.字符或者元组)的引用,就不能 直接修改原始对象--相当于通过"传值"来传递对象. 你可以在很多讨论该问题

  • python中管道用法入门实例

    本文实例讲述了python中管道用法.分享给大家供大家参考.具体如下: #!coding=utf-8 import multiprocessing def consumer(pipe): output_p , input_p = pipe input_p.close() #关闭管道的输入端 while True: try: item = output_p.recv() except EOFError: break print item print ("consumer done") #

  • python中反射用法实例

    本文实例讲述了python中反射用法.分享给大家供大家参考.具体如下: import sys, types,new def _get_mod(modulePath): try: aMod = sys.modules[modulePath] if not isinstance(aMod, types.ModuleType): raise KeyError except KeyError: # The last [''] is very important! aMod = __import__(mo

  • python中xrange用法分析

    本文实例讲述了python中xrange用法.分享给大家供大家参考.具体如下: 先来看如下示例: >>> x=xrange(0,8) >>> print x xrange(8) >>> print x[0] 0 >>> print x[7] 7 >>> print x[8] Traceback (most recent call last): File "<stdin>", line

  • 深入理解python中的浅拷贝和深拷贝

    在讲什么是深浅拷贝之前,我们先来看这样一个现象: a = ['scolia', 123, [], ] b = a[:] b[2].append(666) print a print b 为什么我只对b进行修改,却影响到了a呢?看过我在之前的文章中就说过:序列中保存的都是内存的引用. 所以,当我们通过b去修改里面的空列表的时候,其实就是修改内存中的同一个对象,所以会影响到a. a = ['scolia', 123, [], ] b = a[:] print id(a), id(a[0]), id(

  • python中assert用法实例分析

    本文实例讲述了python中assert用法.分享给大家供大家参考.具体分析如下: 1.assert语句用来声明某个条件是真的. 2.如果你非常确信某个你使用的列表中至少有一个元素,而你想要检验这一点,并且在它非真的时候引发一个错误,那么assert语句是应用在这种情形下的理想语句. 3.当assert语句失败的时候,会引发一AssertionError. 测试程序: >>> mylist = ['item'] >>> assert len(mylist) >=

随机推荐