C语言基于回溯算法解决八皇后问题的方法
本文实例讲述了C语言基于回溯算法解决八皇后问题的方法。分享给大家供大家参考,具体如下:
问题描述:
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例:在8X8格的国际象棋棋盘上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
问题求解:
采用回溯算法,即从第一行开始,依次探查可以放置皇后的位置,若找到,则放置皇后,开始探查下一行;若该行没有位置可以放置皇后,则回溯至上一行,清除该行放置皇后的信息,从该行原本放置皇后的下一个位置开始探查可以放置皇后的位置。求所有解时,每找到一组解,就清除这一组解最后一个皇后的位置信息,开始探查该行另外一个可以放置皇后的位置,依次回溯求解。
存储结构:
一维数组:col[8]:存放第i列有无皇后的标记信息
一维数组:left[15]:存放每一条左斜线上的有无皇后的标记信息
一维数组:right[15]:存放每一条右直线上有无皇后的标记信息
一维数组:Q[8]:存放第i行的皇后的列下标
代码实现:
#include<stdio.h> #define N 8 int col[N] = { 0 }; int right[2 * N - 1] = { 0 }; int left[2 * N - 1] = { 0 }; int Q[N]; int cnt = 0; void Print() { int i; for (i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (Q[i] == j) printf("■"); else printf("□"); } printf("\n"); } printf("==========================\n"); cnt++; } void Queen(int i) { int j; for (j = 0; j < N; j++) { if ((!col[j]) && (!left[i + j]) && (!right[7 + i - j])) { Q[i] = j;//放皇后 col[j] = 1; left[i + j] = 1; right[N - 1 + i - j] = 1;//已有皇后的标记 if (i < N - 1) { Queen(i + 1); } else { Print(); } col[j] = 0; right[N - 1 + i - j] = 0; left[i + j] = 0;//清除标记,查找下一组解 } } } int main(void) { Queen(0); printf("%d", cnt); getchar(); return 0; }
运行结果:
一共92组解,前面结果略去。。
希望本文所述对大家C语言程序设计有所帮助。
赞 (0)