JVM的垃圾回收算法工作原理详解

怎么判断对象是否可以被回收?

共有2种方法,引用计数法和可达性分析

1.引用计数法

所谓引用计数法就是给每一个对象设置一个引用计数器,每当有一个地方引用这个对象时,就将计数器加一,引用失效时,计数器就减一。当一个对象的引用计数器为零时,说明此对象没有被引用,也就是“死对象”,将会被垃圾回收.

引用计数法有一个缺陷就是无法解决循环引用问题,也就是说当对象A引用对象B,对象B又引用者对象A,那么此时A,B对象的引用计数器都不为零,也就造成无法完成垃圾回收,所以主流的虚拟机都没有采用这种算法。

public classReferenceFindTest{
publicstaticvoidmain(String[] args){
MyObject object1 = new MyObject();
MyObject object2 = new MyObject();
object1.object = object2;
object2.object = object1;
object1 = null;
object2 = null;
}
}

2.可达性算法(引用链法)

该算法的思想是:从一个被称为GC Roots的对象开始向下搜索,如果一个对象到GC Roots没有任何引用链相连时,则说明此对象不可用。

在java中可以作为GC Roots的对象有以下几种:

  • 虚拟机栈中引用的对象
  • 方法区类静态属性引用的对象
  • 方法区常量池引用的对象
  • 本地方法栈JNI引用的对象

虽然这些算法可以判定一个对象是否能被回收,但是当满足上述条件时,一个对象比不一定会被回收。当一个对象不可达GC Root时,这个对象并不会立马被回收,而是出于一个死缓的阶段,若要被真正的回收需要经历两次标记。

如果对象在可达性分析中没有与GC Root的引用链,那么此时就会被第一次标记并且进行一次筛选,筛选的条件是是否有必要执行finalize()方法。当对象没有覆盖finalize()方法或者已被虚拟机调用过,那么就认为是没必要的。

如果该对象有必要执行finalize()方法,那么这个对象将会放在一个称为F-Queue的对队列中,虚拟机会触发一个Finalize()线程去执行,此线程是低优先级的,并且虚拟机不会承诺一直等待它运行完,这是因为如果finalize()执行缓慢或者发生了死锁,那么就会造成F-Queue队列一直等待,造成了内存回收系统的崩溃。GC对处于F-Queue中的对象进行第二次被标记,这时,该对象将被移除”即将回收”集合,等待回收。

堆内存分代策略以及意义

策略

Java虚拟机将堆内存划分为新生代、老年战和永久代,永久代是HotSpaot 虚拟机特有的概念,它采用永久代的方式来实现方法区,其他的虚拟机实现没有这一概念,而且HotSpot也有取消永久代的趋势,在JDK 1.7中HotSpot已经开始了“去永久化”,把原本放在永久代的字符串常量池移出。永久代主要存放常量、类信息、静态变量等数据(移植到方法区),与垃圾回收关系不大,新生代和老年代是垃圾回收的主要区域。

新生代(Young)

新生成的对象优先存放在新生代中,新生代对象朝生夕死,存活率很低,在新生代中,常规应用进行一次垃圾收集-般可以回收70% ~ 95%的空间,回收效率很高。

老年代(OldGenerationn)

在新生代中经历了多次(具体看虚拟机配置的阀值)GC后仍然存活下来的对象会进入老年代中。老年代中的对象生命周期较长,存活率比较高,在老年代中进行GC的频率相对而言较低,而且回收的速度也比较慢。

永久代(PermanentGenerationn)

永久代存储类信息、常量、静态变量、即时编译器编译后的代码等数据,对这一区域而言,Java虚拟机规范指出可以不进行垃圾收集,一般而言不会进行垃圾回收。

  • Jdk1.6及之前: 有永久代, 常量池1.6在方法区。
  • Jdk1.7: 有永久代,但已经逐步“去永久代”,常量池1.7在堆。
  • Jdk1.8及之后: 无永久代,常量池1.8在元空间。而元空间是直接存在内存中,不在java虚拟机中的,因此元空间依赖于内存大小。当然你也可以自定义元空间大小。

意义

有了内存分代,新创建的对象会在新生代中分配内存,经过多次回收仍然存活下来的对象存放在老年代中,静态属性、类信息等存放在永久代中,新生代中的对象存活时间短,只需要在新生代区域中频繁进行GC,老年代中对象生命周期长,内存回收的频率相对较低,不需要频繁进行回收,永久代中回收效果太差, 一般不进行垃圾回收,还可以根据不同年代的特点,采用不同的垃圾收集算法。分代垃圾收集大大提升了垃圾收集效率,这些都是JVM分代的好处。

垃圾回收算法

1.复制算法

复制算法将可用内存按容量划分为相等的两部分,然后每次只使用其中的一块,当一块内存用完时,就将还存活的对象复制到第二块内存上,然后一次性清楚完第一块内存,再将第二块上的对象复制到第一块。但是这种方式,内存的代价太高,每次基本上都要浪费一半的内存。

2.标记清除算法

是JVM垃圾回收算法中最古老的一个,该算法共分成两个阶段,第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,清除未被标记的对象。该算法的缺点是需要暂停整个应用,并且在回收以后未使用的空间是不连续,即内存碎片,会影响到存储。

3.标记整理算法

此算法结合了标记-清楚算法和复制算法的优点,也分为两个阶段,第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,在回收不存活的对象占用的空间后,会将所有的存活对象往左端空闲空间移动,并更新对应的指针。标记-整理算法是在标记-清除算法的基础上,又进行了对象的移动,因此成本更高,但是却解决了内存碎片的问题,按顺序排放,同时解决了复制算法所需内存空间过大的问题。

4.分代收集

分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),在堆区之外还有一个代就是永久代(Permanet Generation)。老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。

a.年轻代回收算法(核心其实就是复制算法)

HotSpot将新生代划分为三块,-块较大的Eden空间和两块较小的Survivor空间,默认比例为8: 1: 1。划分的目的是因为HotSpot采用复制算法来回收新生代,设置这个比例是为了充分利用内存空间,减少浪费。新生成的对象在Eden区分配(大对象除外,大对象直接进入老年代) ,当Eden区没有足够的空间进行分配时,虚拟机将发起一次Minor GC。GC开始时,对象只会存在于Eden区和From Survivor区,To Survivor区是空的(作为保留区域)。

GC进行时,Eden区中所有存活的对象都会被复制到To Survivor区,而在FromSurvivor区中,仍存活的对象会根据它们的年龄值决定去向,年龄值达到阀值(默认为15 ,新生代中的对象每熬过一轮垃圾回收年龄值就加1 ,GC分代年龄存储在对象的header中)的对象会被移到老年代中,没有达到阀值的对象会被复制到To Survivor区。

接着清空Eden区和From Survivor区,新生代中存活的对象都在To Survivor区。接着, From Survivor区和To Survivor区会交换它们的角色,也就是新的To Survivor区就是上次GC清空的FromSurvivor区,新的From Survivor区就是.上次GC的To Survivor区,总之,不管怎样都会保证To Survivor区在一轮GC后是空的(其实这就是分代收集算法中的年轻代回收算法,稍后我们会看到)。

GC时当To Survivor区没有足够的空间存放上一次新生代收集下来的存活对象时,需要依赖老年代进行分配担保,将这些对象存放在老年代中。

b.老年代回收算法(回收主要以标记-整理为主)

1)在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。

2)内存比新生代也大很多(大概比例是1:2),当老年代内存满时触发Major GC即Full GC,Full GC发生频率比较低,老年代对象存活时间比较长,存活率标记高。

c. 持久代(Permanent Generation)的回收算法

用于存放静态文件,如Java类、方法等。持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate 等,在这种时候需要设置一个比较大的持久代空间来存放这些运行过程中新增的类。在该区内很少发生垃圾回收,但是并不代表不发生GC,在这里进行的GC主要是对持久代里的常量池和对类型的卸载。

条件:

1)该类所有的实例都已经被回收,即Java堆中不存在该类的任何实例;

2)加载该类的ClassLoader已经被回收;

3)该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

虚拟机可以对满足上述3个条件的无用类进行回收,此处仅仅是“可以”,而并不是和对象一样,不使用了就必然回收!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 详解Java内存管理中的JVM垃圾回收

    一.概述 相比起C和C++的自己回收内存,JAVA要方便得多,因为JVM会为我们自动分配内存以及回收内存. 在之前的JVM 之内存管理 中,我们介绍了JVM内存管理的几个区域,其中程序计数器以及虚拟机栈是线程私有的,随线程而灭,故而它是不用考虑垃圾回收的,因为线程结束其内存空间即释放. 而JAVA堆和方法区则不一样,JAVA堆和方法区时存放的是对象的实例信息以及对象的其他信息,这部分是垃圾回收的主要地点. 二.JAVA堆垃圾回收 垃圾回收主要考虑的问题有两个:一个是效率问题,一个是空间碎片问题.

  • 快速理解Java垃圾回收和jvm中的stw

    Java中Stop-The-World机制简称STW,是在执行垃圾收集算法时,Java应用程序的其他所有线程都被挂起(除了垃圾收集帮助器之外).Java中一种全局暂停现象,全局停顿,所有Java代码停止,native代码可以执行,但不能与JVM交互:这些现象多半是由于gc引起. GC时的Stop the World(STW)是大家最大的敌人.但可能很多人还不清楚,除了GC,JVM下还会发生停顿现象. JVM里有一条特殊的线程--VM Threads,专门用来执行一些特殊的VM Operation

  • 基于JVM 中常见垃圾收集算法介绍

    JVM 中常见的垃圾收集算法有四种: 标记-清除算法(Mark-Sweep): 复制算法(Copying): 标记-整理(Mark-Compact): 分代收集: 下面我们来一一介绍: 一.标记-清除算法(Mark-Sweep) 这是最基础的垃圾收集算法,算法分为"标记"和"清除"两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象.它的主要缺点有两个:一个是效率问题,标记和清除效率都不高:另一个是空间问题,标记清除后会产生大量不连续的内存

  • JVM教程之内存管理和垃圾回收(三)

    JVM内存组成结构 JVM栈由堆.栈.本地方法栈.方法区等部分组成,结构图如下所示: 1)堆 所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制.堆被划分为新生代和旧生代,新生代又被进一步划分为Eden和Survivor区,最后Survivor由From Space和To Space组成,结构图如下所示: 新生代.新建的对象都是用新生代分配内存,Eden空间不足的时候,会把存活的对象转移到Survivor中,新生代大小可以由-Xmn来控制,也可以用-XX:Surv

  • 浅谈jvm中的垃圾回收策略

    java和C#中的内存的分配和释放都是由虚拟机自动管理的,此前我已经介绍了CLR中GC的对象回收方式,是基于代的内存回收策略,其实在java中,JVM的对象回收策略也是基于分代的思想.这样做的目的就是为了提高垃圾 回收的性能,避免对堆中的所有对象进行检查时所带来的程序的响应的延迟,因为jvm执行GC时,会stop the word,即终止其它线程的运行,等回收完毕,才恢复其它线程的操作.基于分代的思想是:jvm在每一次执行垃圾收集器时,只是对一小部分内存 对象引用进行检查,这一小部分对象的生命周

  • JVM垃圾收集器详解

    说起垃圾收集(Garbage Collection,GC),大部分人都把这项技术当做Java语言的伴生产物.事实上,GC的历史远比Java久远,1960年诞生于MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言.当List还在胚胎时期时,人们就在思考GC需要完成的3件事情: 哪些内存需要回收? 什么时候回收? 如何回收? 一.哪些内存需要回收? 从JVM区域结构看,可将这些区域划分为"静态内存"和"动态内存"两类.程序计数器.虚拟机栈.本地方法3个区域

  • 图解JVM垃圾内存回收算法

    前言 首先,我们要讲的是JVM的垃圾回收机制,我默认准备阅读本篇的人都知道以下两点: JVM是做什么的 Java堆是什么 因为我们即将要讲的就是发生在JVM的Java堆上的垃圾回收,为了突出核心,其他的一些与本篇不太相关的东西我就一笔略过了 众所周知,Java堆上保存着对象的实例,而Java堆的大小是有限的,所以我们只能把一些已经用完的,无法再使用的垃圾对象从内存中释放掉,就像JVM帮助我们手动在代码中添加一条类似于C++的free语句的行为 然而这些垃圾对象是怎么回收的,现在不知道没关系,我们

  • JVM的垃圾回收算法工作原理详解

    怎么判断对象是否可以被回收? 共有2种方法,引用计数法和可达性分析 1.引用计数法 所谓引用计数法就是给每一个对象设置一个引用计数器,每当有一个地方引用这个对象时,就将计数器加一,引用失效时,计数器就减一.当一个对象的引用计数器为零时,说明此对象没有被引用,也就是"死对象",将会被垃圾回收. 引用计数法有一个缺陷就是无法解决循环引用问题,也就是说当对象A引用对象B,对象B又引用者对象A,那么此时A,B对象的引用计数器都不为零,也就造成无法完成垃圾回收,所以主流的虚拟机都没有采用这种算法

  • Java垃圾回收机制的示例详解

    目录 一.概述 二.对象已死? 1.引用计数算法 2.可达性分析算法 3.四种引用 4.生存还是死亡? 5.回收方法区 三.垃圾收集算法 1.分代收集理论 2.名词解释 3.标记-清除算法 4.标记-复制算法 5.标记-整理算法 一.概述 说起垃圾收集(Garbage Collection,下文简称GC),有不少人把这项技术当作Java语言的伴生产 物.事实上,垃圾收集的历史远远比Java久远,在1960年诞生于麻省理工学院的Lisp是第一门开始使 用内存动态分配和垃圾收集技术的语言.当Lisp

  • Vue2 的 diff 算法规则原理详解

    目录 前言 算法规则 diff 优化策略 老数组的开始与新数组的开始 老数组的结尾与新数组的结尾 老数组的开始与新数组的结尾 老数组的结尾与新数组的开始 以上四种情况都没对比成功 推荐在渲染列表时为节点设置 key 循环比对结束的后续处理工作 源码解析 总结 前言 所谓 diff 算法,就是通过比对新旧两个虚拟节点不一样的地方,针对那些不一样的地方进行新增或更新或删除操作.接下来我们详细介绍节点更新的过程. 首先进行静态节点处理,判断新旧两个虚拟节点是否是静态节点,如果是,就不需要进行更新操作,

  • Spring @Transactional工作原理详解

    本文将深入研究Spring的事务管理.主要介绍@Transactional在底层是如何工作的.之后的文章将介绍: propagation(事务传播)和isolation(隔离性)等属性的使用 事务使用的陷阱有哪些以及如何避免 JPA和事务管理 很重要的一点是JPA本身并不提供任何类型的声明式事务管理.如果在依赖注入容器之外使用JPA,事务处理必须由开发人员编程实现. UserTransaction utx = entityManager.getTransaction(); try{ utx.be

  • Javascript对象及Proxy工作原理详解

    正文 这一章其实算是javascript的科普文章,其实这本书的读者一般都不会是入门者,因此按道理说应该不需要再科普才对.但是作者依旧安排了这一章,证明就是这一章内容与我们以为的对象不一样. Javascript中一切皆对象 这一句话大家应该耳熟能详,对于常规的字面量对象,和new出来的对象,大家应该都能分辨 const str = '' const str2 = new String() const obj = {} const obj2 = Object.create() 但是根据ECMA,

  • RocketMQ Namesrv架构工作原理详解

    目录 1 概念 2 核心数据结构和API 2.1 Namesrv的核心数据结构 2.2 Namesrv的API 3 Namesrv架构 3.1组件 3.2 Namesrv四个功能模块 1 概念 Namesrv的作用是保存元数据,提高Broker的可用性. Namesrv的主要功能是临时存储,管理Topic路由信息,各个Namesrv节点之间是不通信,无状态的,互相不知道对方的存在. 当Broker,生产者,消费者启动的时候,会轮询全部的Namesrv节点,获取路由信息. 2 核心数据结构和API

  • RC4加密关键变量及算法特点原理详解

    目录 什么是RC4 RC4算法特点 RC4加密的几个关键变量 RC4加密原理 什么是RC4 RC4加密算法是大名鼎鼎的RSA三人组中的头号人物Ron Rivest在1987年设计的密钥长度可变的流加密算法簇.RC4算法是一种在电子信息领域加密的技术手段,用于无线通信网络,是一种电子密码,只有经过授权的用户才能享受该服务. RC4 流密码是使用最广泛的流密码之一,它通过算法一次一个字节地加密消息,简单并且操作速度快. RC4是一种在电子信息领域加密的技术手段,用于无线通信网络,是一种电子密码,只有

  • JVM的垃圾回收算法一起来看看

    目录 垃圾回收算法 概念 1.标记算法 1.1引用计数法(ReferenceCounting) 1.2可达性分析算法(ReachableAnalysis) 2.回收算法 2.1标记清除算法(MarkSweep) 2.2复制算法(Copying) 2.3标记压缩算法(Mark-Compact) 2.4分代回收算法 总结 垃圾回收算法 概念 垃圾回收(Garbage Collection,GC).程序的运行需要资源,无效的对象如果不及时清理就会一直占用资源,所以对内存资源管理就变得十分重要.而Jav

  • Python中垃圾回收和del语句详解

    Python中的垃圾回收算法是采用引用计数, 当一个对象的引用计数为0时, Python的垃圾回收机制就会将对象回收 a = "larry" b = a larry这个字符串对象, 在第一行被贴了a标签后, 引用计数为1, 之后在第二行, 由贴上了b标签, 此时, 该字符串对象的引用计数为 a = "larry" b = a del a 注意: 在Python语言中, del语句操作某个对象的时候, 并不是直接将该对象在内存中删除, 而是将该对象的引用计数-1 &g

  • go:垃圾回收GC触发条件详解

    版本: go version go1.13 darwin/amd64 在go源码runtime目录中找到gcTrigger结构体,就能看出大致调用的位置 GC调用方式 所在位置 代码 定时调用 runtime/proc.go:forcegchelper() gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()}) 分配内存时调用 runtime/malloc.go:mallocgc() gcTrigger{kind: gcTriggerHe

随机推荐