python树的同构学习笔记
一、题意理解
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构的”。现给定两棵树,请你判断它们是否是同构的。
输入格式:输入给出2棵二叉树的信息:
先在一行中给出该树的结点树,随后N行
第i行对应编号第i个结点,给出该结点中存储的字母、其左孩子结点的编号、右孩子结点的编号
如果孩子结点为空,则在相应位置给出“-”
如下图所示,有多种表示的方式,我们列出以下两种:
二、求解思路
搜到一篇也是讲这个的,但是那篇并没有完全用到单向链表的方法,所以研究了一下,写了一个是完全用单向链表的方法:
其实应该有更优雅的删除整个单向列表的方法,比如头设为none,可能会改进下?
# python语言实现 L1 = list(map(int, input().split())) L2 = list(map(int, input().split())) # 节点 class Node: def __init__(self, coef, exp): self.coef = coef self.exp = exp self.next = None # 单链表 class List: def __init__(self, node=None): self.__head = node # 为了访问私有类 def gethead(self): return self.__head def travel(self): cur1 = self.__head cur2 = self.__head if cur1.next != None: cur1 = cur1.next else: print(cur2.coef, cur2.exp, end="") return while cur1.next != None: print(cur2.coef, cur2.exp, end=" ") cur1 = cur1.next cur2 = cur2.next print(cur2.coef, cur2.exp, end=" ") cur2 = cur2.next print(cur2.coef, cur2.exp, end="") # add item in the tail def append(self, coef, exp): node = Node(coef, exp) if self.__head == None: self.__head = node else: cur = self.__head while cur.next != None: cur = cur.next cur.next = node def addl(l1, l2): p1 = l1.gethead() p2 = l2.gethead() l3 = List() while (p1 is not None) & (p2 is not None): if (p1.exp > p2.exp): l3.append(p1.coef, p1.exp) p1 = p1.next elif (p1.exp < p2.exp): l3.append(p2.coef, p2.exp) p2 = p2.next else: if (p1.coef + p2.coef == 0): p1 = p1.next p2 = p2.next else: l3.append(p2.coef + p1.coef, p1.exp) p2 = p2.next p1 = p1.next while p1 is not None: l3.append(p1.coef, p1.exp) p1 = p1.next while p2 is not None: l3.append(p2.coef, p2.exp) p2 = p2.next if l3.gethead() == None: l3.append(0, 0) return l3 def mull(l1, l2): p1 = l1.gethead() p2 = l2.gethead() l3 = List() l4 = List() if (p1 is not None) & (p2 is not None): while p1 is not None: while p2 is not None: l4.append(p1.coef * p2.coef, p1.exp + p2.exp) p2 = p2.next l3 = addl(l3, l4) l4 = List() p2 = l2.gethead() p1 = p1.next else: l3.append(0, 0) return l3 def L2l(L): l = List() L.pop(0) for i in range(0, len(L), 2): l.append(L[i], L[i + 1]) return l l1 = L2l(L1) l2 = L2l(L2) l3 = List() l3 = mull(l1, l2) l3.travel() print("") l3 = List() l3 = addl(l1, l2) l3.travel()
以上就是本次介绍的全部内容知识点,相关内容可以参阅下方知识点,感谢大家对我们的支持。
赞 (0)