softmax及python实现过程解析

相对于自适应神经网络、感知器,softmax巧妙低使用简单的方法来实现多分类问题。

  • 功能上,完成从N维向量到M维向量的映射
  • 输出的结果范围是[0, 1],对于一个sample的结果所有输出总和等于1
  • 输出结果,可以隐含地表达该类别的概率

softmax的损失函数是采用了多分类问题中常见的交叉熵,注意经常有2个表达的形式

  • 经典的交叉熵形式:L=-sum(y_right * log(y_pred)), 具体
  • 简单版本是: L = -Log(y_pred),具体

这两个版本在求导过程有点不同,但是结果都是一样的,同时损失表达的意思也是相同的,因为在第一种表达形式中,当y不是

正确分类时,y_right等于0,当y是正确分类时,y_right等于1。

下面基于mnist数据做了一个多分类的实验,整体能达到85%的精度。

'''
softmax classifier for mnist 

created on 2019.9.28
author: vince
'''
import math
import logging
import numpy
import random
import matplotlib.pyplot as plt
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
from sklearn.metrics import accuracy_score

def loss_max_right_class_prob(predictions, y):
	return -predictions[numpy.argmax(y)];

def loss_cross_entropy(predictions, y):
	return -numpy.dot(y, numpy.log(predictions));

'''
Softmax classifier
linear classifier
'''
class Softmax:

	def __init__(self, iter_num = 100000, batch_size = 1):
		self.__iter_num = iter_num;
		self.__batch_size = batch_size;

	def train(self, train_X, train_Y):
		X = numpy.c_[train_X, numpy.ones(train_X.shape[0])];
		Y = numpy.copy(train_Y);

		self.L = [];

		#initialize parameters
		self.__weight = numpy.random.rand(X.shape[1], 10) * 2 - 1.0;
		self.__step_len = 1e-3; 

		logging.info("weight:%s" % (self.__weight));

		for iter_index in range(self.__iter_num):
			if iter_index % 1000 == 0:
				logging.info("-----iter:%s-----" % (iter_index));
			if iter_index % 100 == 0:
				l = 0;
				for i in range(0, len(X), 100):
					predictions = self.forward_pass(X[i]);
					#l += loss_max_right_class_prob(predictions, Y[i]);
					l += loss_cross_entropy(predictions, Y[i]);
				l /= len(X);
				self.L.append(l);

			sample_index = random.randint(0, len(X) - 1);
			logging.debug("-----select sample %s-----" % (sample_index));

			z = numpy.dot(X[sample_index], self.__weight);
			z = z - numpy.max(z);
			predictions = numpy.exp(z) / numpy.sum(numpy.exp(z));
			dw = self.__step_len * X[sample_index].reshape(-1, 1).dot((predictions - Y[sample_index]).reshape(1, -1));
#			dw = self.__step_len * X[sample_index].reshape(-1, 1).dot(predictions.reshape(1, -1));
#			dw[range(X.shape[1]), numpy.argmax(Y[sample_index])] -= X[sample_index] * self.__step_len;

			self.__weight -= dw;

			logging.debug("weight:%s" % (self.__weight));
			logging.debug("loss:%s" % (l));
		logging.info("weight:%s" % (self.__weight));
		logging.info("L:%s" % (self.L));

	def forward_pass(self, x):
		net = numpy.dot(x, self.__weight);
		net = net - numpy.max(net);
		net = numpy.exp(net) / numpy.sum(numpy.exp(net));
		return net;

	def predict(self, x):
		x = numpy.append(x, 1.0);
		return self.forward_pass(x);

def main():
	logging.basicConfig(level = logging.INFO,
			format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
			datefmt = '%a, %d %b %Y %H:%M:%S');

	logging.info("trainning begin.");

	mnist = read_data_sets('../data/MNIST',one_hot=True)  # MNIST_data指的是存放数据的文件夹路径,one_hot=True 为采用one_hot的编码方式编码标签

	#load data
	train_X = mnist.train.images        #训练集样本
	validation_X = mnist.validation.images   #验证集样本
	test_X = mnist.test.images         #测试集样本
	#labels
	train_Y = mnist.train.labels        #训练集标签
	validation_Y = mnist.validation.labels   #验证集标签
	test_Y = mnist.test.labels         #测试集标签

	classifier = Softmax();
	classifier.train(train_X, train_Y);

	logging.info("trainning end. predict begin.");

	test_predict = numpy.array([]);
	test_right = numpy.array([]);
	for i in range(len(test_X)):
		predict_label = numpy.argmax(classifier.predict(test_X[i]));
		test_predict = numpy.append(test_predict, predict_label);
		right_label = numpy.argmax(test_Y[i]);
		test_right = numpy.append(test_right, right_label);

	logging.info("right:%s, predict:%s" % (test_right, test_predict));
	score = accuracy_score(test_right, test_predict);
	logging.info("The accruacy score is: %s "% (str(score)));

	plt.plot(classifier.L)
	plt.show();

if __name__ == "__main__":
	main();

损失函数收敛情况

Sun, 29 Sep 2019 18:08:08 softmax.py[line:104] INFO trainning end. predict begin.
Sun, 29 Sep 2019 18:08:08 softmax.py[line:114] INFO right:[7. 2. 1. ... 4. 5. 6.], predict:[7. 2. 1. ... 4. 8. 6.]
Sun, 29 Sep 2019 18:08:08 softmax.py[line:116] INFO The accruacy score is: 0.8486 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python实现淘宝秒杀脚本

    本文实例为大家分享了python实现淘宝秒杀脚本的具体代码,供大家参考,具体内容如下 1.安装pycharm.网上教程很多. 2.安装 Selenium 库. Selenium支持很多浏览器,我选择的是Firefox浏览器. 因为我这里是Python3环境,自带的又pip,所以安装selenium直接使用pip安装 安装方法: --打开cmd: --输入命令进入Python36/Scripts(找到下图的目录)目录下: --输入命令 pip install selenium: --回车,等待自动

  • python 实现矩阵上下/左右翻转,转置的示例

    python中没有二维数组,用一个元素为list的list(matrix)保存矩阵,row为行数,col为列数 1. 上下翻转:只需要把每一行的list交换即可 for i in range(row // 2): matrix[i], matrix[row-1-i] = matrix[row-1-i], matrix[i] 2. 左右翻转:需要逐个交换元素 for m in matrix: for j in range(col // 2): m[j], m[col-1-j] = m[col-1-

  • TensorFlow实现Softmax回归模型

    一.概述及完整代码 对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型. 先看完整代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist imp

  • 用Python和WordCloud绘制词云的实现方法(内附让字体清晰的秘笈)

    环境及模块: Win7 64位 Python 3.6.4 WordCloud 1.5.0 Pillow 5.0.0 Jieba 0.39 目标: 绘制安徽省2018年某些科技项目的词云,直观展示热点. 思路: 先提取项目的名称,再用Jieba分词后提取词汇:过滤掉"研发"."系列"等无意义的词:最后用WordCloud 绘制词云. 扩展: 词云默认是矩形的,本代码采用图片作为蒙版,产生异形词云图.这里用的图片是安徽省地图. 秘笈: 用网上的常规方法绘制的词云,字体有

  • python中实现控制小数点位数的方法

    前段时间遇到一个问题,python中怎么设置小数点位数,经过查资料,在这里整理了两种较为简单的方法: 法1:利用python内置的round()函数 a = 1.1314 a = 1.0000 a = 1.1267 b = round(a, 2) b = round(a, 2) b = round(a, 2) output: b=1.13 output: b=1.0 output: b=1.13 法2: a = 1.1314 a = 1.0000 a = 1.1267 b = '%.2f' %

  • Python 实现中值滤波、均值滤波的方法

    红包: Lena椒盐噪声图片: # -*- coding: utf-8 -*- """ Created on Sat Oct 14 22:16:47 2017 @author: Don """ from tkinter import * from skimage import io import numpy as np im=io.imread('lena_sp.jpg', as_grey=True) im_copy_med = io.imrea

  • python实现五子棋小游戏

    本文实例为大家分享了python实现五子棋小游戏的具体代码,供大家参考,具体内容如下 暑假学了十几天python,然后用pygame模块写了一个五子棋的小游戏,代码跟有缘人分享一下. import numpy as np import pygame import sys import traceback import copy from pygame.locals import * pygame.init() pygame.mixer.init() #颜色 background=(201,202

  • Python下的Softmax回归函数的实现方法(推荐)

    Softmax回归函数是用于将分类结果归一化.但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况. Softmax公式 Softmax实现方法1 import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" pass # TODO: Compute and re

  • softmax及python实现过程解析

    相对于自适应神经网络.感知器,softmax巧妙低使用简单的方法来实现多分类问题. 功能上,完成从N维向量到M维向量的映射 输出的结果范围是[0, 1],对于一个sample的结果所有输出总和等于1 输出结果,可以隐含地表达该类别的概率 softmax的损失函数是采用了多分类问题中常见的交叉熵,注意经常有2个表达的形式 经典的交叉熵形式:L=-sum(y_right * log(y_pred)), 具体 简单版本是: L = -Log(y_pred),具体 这两个版本在求导过程有点不同,但是结果

  • Python爬虫过程解析之多线程获取小米应用商店数据

    本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理. 以下文章来源于IT共享之家 ,作者IT共享者 前言 小米应用商店给用户发现最好的安卓应用和游戏,安全可靠,可是要下载东西要一个一个地搜索太麻烦了.而且速度不是很快. 今天用多线程爬取小米应用商店的游戏模块.快速获取. 二.项目目标 目标 :应用分类 - 聊天社交 应用名称, 应用链接,显示在控制台供用户下载. 三.涉及的库和网站 1.网址:百度搜 - 小米应用商店,进入官网. 2.涉及的库:re

  • Softmax函数原理及Python实现过程解析

    Softmax原理 Softmax函数用于将分类结果归一化,形成一个概率分布.作用类似于二分类中的Sigmoid函数. 对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z).softmax可以用于实现上述结果,具体计算公式为: 对于k维向量z来说,其中zi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞),之后我们再所有元素求和将结果缩放到[0,1],形成概率分布. 常见的其他归一化方法,如max-min.z-score方法并不能保证各个元素为正,且和为1. S

  • 在vscode中配置python环境过程解析

    1.安装vscode和python3.7(安装路径在:E:\Python\Python37): 2.打开vscode,在左下角点击设置图标选择setting,搜索python path,在该路径下选择python的安装路径(E:\Python\Python37),如下图: 3.在本地新建一个文件夹,在vscode里直接打开: 4.点击新建一个.py文件,这里为hello.py,并打开这个文件: 5.按F5运行这个文件,会弹出Add configurations框,选择python文件即可,会在l

  • FFT快速傅里叶变换的python实现过程解析

    FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码. # encoding=utf-8 import numpy as np import pylab as pl # 导入和matplotlib同时安装的作图库pylab sampling_rate = 8000 # 采样频率8000Hz fft_size = 512 # 采样点512,就是说以8000Hz的速度采512个点,我们获得的数据只有这512个点的对应时刻和此时的信号值. t = np.l

  • 基于Numba提高python运行效率过程解析

    Numba是Python的即时编译器,在使用NumPy数组和函数以及循环的代码上效果最佳.使用Numba的最常见方法是通过其装饰器集合,这些装饰器可应用于您的函数以指示Numba对其进行编译.调用Numba装饰函数时,它会被"即时"编译为机器代码以执行,并且您的全部或部分代码随后可以本机机器速度运行! 安装numba(我在这里加了--default-timeout=10000,防止安装时出现timeout的错误) pip --default-timeout=10000 install

  • 在Mac中配置Python虚拟环境过程解析

    如何在Mac中配置Python虚拟环境 1.安装virtualenv pip3 install virtualenv 2.安装virtualenvwrapper pip3 install virtualenv 3.配置.bashrc文件,没有的话在根目录"~"下创建一个 cd ~ vim .bashrc 定义Python安装路径(可通过which is python3查询) export VIRTUALENVWRAPPER_PYTHON='/usr/local/bin/python3

  • Docker容器化部署Python应用过程解析

    简单应用部署 一.目录结构: └── Pythonpro #目录 └── test.py #文件 └── requirements.txt #文件 └── Dockerfile #文件 二.编写Dockerfile文件 # 基于镜像基础 FROM python:3.6.4 # 创建代码文件夹工作目录 /code RUN mkdir /code # 复制当前代码文件到容器中 /code COPY . /code # 安装所需的包 RUN pip install -r /code/requireme

  • 用python写测试数据文件过程解析

    这篇文章主要介绍了用python写测试数据文件过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 f是指向文件的指针,r是转义字符,可以让字符串中的\保持不被转义.路径点属性查然后加上当前文件. 'w'表示只写,'r'表示只读. import random 导入random数 s = []开一个空列表 循环,2^20用2**20表示 append是apply to end 把字符串接到后面 s = ''.join(s)表示以''中的元素为间

  • python打包成so文件过程解析

    这篇文章主要介绍了python打包成so文件过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 wget https://bootstrap.pypa.io/get-pip.py python get-pip.py pip install cython 编写setput.py文件: setup.py文件内容如下: from distutils.core import setup from distutils.extension import

随机推荐