Python中import机制详解

Python语言中import的使用很简单,直接使用 import module_name 语句导入即可。这里我主要写一下"import"的本质。

Python官方

定义:Python code in one module gains access to the code in another module by the process of importing it.

1.定义:

模块(module):用来从逻辑(实现一个功能)上组织Python代码(变量、函数、类),本质就是*.py文件。文件是物理上组织方式"module_name.py",模块是逻辑上组织方式"module_name"。

包(package):定义了一个由模块和子包组成的Python应用程序执行环境,本质就是一个有层次的文件目录结构(必须带有一个__init__.py文件)。

2.导入方法

# 导入一个模块
import model_name
# 导入多个模块
import module_name1,module_name2
# 导入模块中的指定的属性、方法(不加括号)、类
from moudule_name import moudule_element [as new_name]

方法使用别名时,使用"new_name()"调用函数,文件中可以再定义"module_element()"函数。

3.import本质(路径搜索和搜索路径)

moudel_name.py

# -*- coding:utf-8 -*-
print("This is module_name.py")

name = 'Hello'

def hello():
  print("Hello")
module_test01.py

# -*- coding:utf-8 -*-
import module_name

print("This is module_test01.py")
print(type(module_name))
print(module_name)

运行结果:

E:\PythonImport>python module_test01.py
This is module_name.py
This is module_test01.py
<class 'module'>
<module 'module_name' from 'E:\\PythonImport\\module_name.py'>

在导入模块的时候,模块所在文件夹会自动生成一个__pycache__\module_name.cpython-35.pyc文件。

"import module_name" 的本质是将"module_name.py"中的全部代码加载到内存并赋值给与模块同名的变量写在当前文件中,这个变量的类型是'module';<module 'module_name' from 'E:\\PythonImport\\module_name.py'>

module_test02.py

# -*- coding:utf-8 -*-
from module_name import name

print(name)

运行结果;
E:\PythonImport>python module_test02.py
This is module_name.py
Hello
"from module_name import name" 的本质是导入指定的变量或方法到当前文件中。

package_name / __init__.py

# -*- coding:utf-8 -*-

print("This is package_name.__init__.py")
module_test03.py

# -*- coding:utf-8 -*-
import package_name

print("This is module_test03.py")

运行结果:

E:\PythonImport>python module_test03.py
This is package_name.__init__.py
This is module_test03.py

"import package_name"导入包的本质就是执行该包下的__init__.py文件,在执行文件后,会在"package_name"目录下生成一个"__pycache__ / __init__.cpython-35.pyc" 文件。

package_name / hello.py

# -*- coding:utf-8 -*-

print("Hello World")
package_name / __init__.py

# -*- coding:utf-8 -*-
# __init__.py文件导入"package_name"中的"hello"模块
from . import hello
print("This is package_name.__init__.py")

运行结果:

E:\PythonImport>python module_test03.py
Hello World
This is package_name.__init__.py
This is module_test03.py

在模块导入的时候,默认现在当前目录下查找,然后再在系统中查找。系统查找的范围是:sys.path下的所有路径,按顺序查找。

4.导入优化

module_test04.py

# -*- coding:utf-8 -*-
import module_name

def a():
  module_name.hello()
  print("fun a")

def b():
  module_name.hello()
  print("fun b")

a()
b()

运行结果:

E:\PythonImport>python module_test04.py
This is module_name.py
Hello
fun a
Hello
fun b

多个函数需要重复调用同一个模块的同一个方法,每次调用需要重复查找模块。所以可以做以下优化:

module_test05.py

# -*- coding:utf-8 -*-
from module_name import hello

def a():
  hello()
  print("fun a")

def b():
  hello()
  print("fun b")

a()
b()

运行结果:

E:\PythonImport>python module_test04.py
This is module_name.py
Hello
fun a
Hello
fun b

可以使用"from module_name import hello"进行优化,减少了查找的过程。

5.模块的分类

内建模块

可以通过 "dir(__builtins__)" 查看Python中的内建函数

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException', 'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError', 'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False', 'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError', 'OverflowError', 'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError', 'RecursionError', 'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration', 'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning', 'WindowsError', 'ZeroDivisionError', '_', '__build_class__', '__debug__', '__doc__', '__import__', '__loader__','__name__', '__package__', '__spec__', 'abs', 'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable', 'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 'reversed', 'round','set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']

非内建函数需要使用"import"导入。Python中的模块文件在"安装路径\Python\Python35\Lib"目录下。

第三方模块

通过"pip install "命令安装的模块,以及自己在网站上下载的模块。一般第三方模块在"安装路径\Python\Python35\Lib\site-packages"目录下。

(0)

相关推荐

  • Python import用法以及与from...import的区别

    在python用import或者from...import来导入相应的模块.模块其实就是一些函数和类的集合文件,它能实现一些相应的功能,当我们需要使用这些功能的时候,直接把相应的模块导入到我们的程序中,我们就可以使用了.这类似于C语言中的include头文件,Python中我们用import导入我们需要的模块. eg: 复制代码 代码如下: import sys print('================Python import mode==========================

  • python之import机制详解

    本文详述了Python的import机制,对于理解Python的运行机制很有帮助! 1.标准import: Python中所有加载到内存的模块都放在 sys.modules .当 import 一个模块时首先会在这个列表中查找是否已经加载了此模块,如果加载了则只是将模块的名字加入到正在调用 import 的模块的 Local 名字空间中.如果没有加载则从 sys.path 目录中按照模块名称查找模块文件,模块可以是py.pyc.pyd,找到后将模块载入内存,并加到 sys.modules 中,并

  • Python中import导入上一级目录模块及循环import问题的解决

    import上一级目录的模块 python中,import module会去sys.path搜索,sys.path是个列表,并且我们可以动态修改. 要import某个目录的module,我们sys.path.insert(0,somedir)来加入搜索路径,就可以import了. 既然这样,要import上一级目录的module,可以sys.path.insert(0,parentdir). 不过这种写绝对路径的方式,如果文件放到其它地方,就不行了. 所以用动态方法来获取上一级目录. impor

  • python在不同层级目录import模块的方法

    使用python进行程序编写时,经常会使用第三方模块包.这种包我们可以通过python setup install 进行安装后,通过import XXX或from XXX import yyy 进行导入.不过如果是自己遍写的依赖包,又不想安装到python的相应目录,可以放到本目录里进行import进行调用:为了更清晰的理清程序之间的关系,例如我们会把这种包放到lib目录再调用.本篇就针对常见的模块调用方法汇总下. 一.同级目录下的调有 程序结构如下: -- src     |-- mod1.p

  • Python import自定义模块方法

    python包含子目录中的模块方法比较简单,关键是能够在sys.path里面找到通向模块文件的路径. 下面将具体介绍几种常用情况: (1)主程序与模块程序在同一目录下: 如下面程序结构: `-- src |-- mod1.py `-- test1.py 若在程序test1.py中导入模块mod1, 则直接使用import mod1或from mod1 import *; (2)主程序所在目录是模块所在目录的父(或祖辈)目录 如下面程序结构: `-- src |-- mod1.py |-- mod

  • Python引用(import)文件夹下的py文件的方法

    Python的import包含文件功能就跟PHP的include类似,但更确切的说应该更像是PHP中的require,因为Python里的import只要目标不存在就报错程序无法往下执行.要包含目录里的文件,PHP中只需要给对路径就OK.Python中则不同,下面来看看这个例子. 目录结构: a.py 要 import dir目录下的 b.py 文件.a.py代码如下: 复制代码 代码如下: # coding=utf-8 "import dir 目录下的 b.py 文件"   impo

  • 跟老齐学Python之Import 模块

    认识模块 对于模块,在前面的一些举例中,已经涉及到了,比如曾经有过:import random (获取随机数模块).为了能够对模块有一个清晰的了解,首先要看看什么模块,这里选取官方文档中对它的定义: 复制代码 代码如下: A module is a file containing Python definitions and statements. The file name is the module name with the suffix .py appended. Within a mo

  • 详解Python中的from..import绝对导入语句

    相对或者绝对import 更多的复杂部分已经从python2.5以来实现:导入一个模块可以指定使用绝对或者包相对的导入.这个计划将移动到使绝对的导入成为默认的细节在其他版本的python中. 我们假设你有一个包目录,像下面这样: pkg/ pkg/__init__.py pkg/main.py pkg/string.py 上面定义了一个包称为 pkg 包含 pkg.main 和pkg.string 两个子模块.考虑在'main.py'中的代码,什么事情会发生如果我们执行语句 import str

  • 从零学python系列之新版本导入httplib模块报ImportError解决方案

    之前用Python 2.7版本的httplib做接口测试时,运行代码都是正常的, 最近开始用Python 3.3之后,再去看以前的代码,发现import httplib出现错误:Unresolved import :httplib, 运行代码时也报错:ImportError: No module named 'httplib' 查找各种资料发现原来Python 2.x中的"httplib"模块在Python 3.x中变成了"http.client",就怪之前只了解了

  • Python中import机制详解

    Python语言中import的使用很简单,直接使用 import module_name 语句导入即可.这里我主要写一下"import"的本质. Python官方 定义:Python code in one module gains access to the code in another module by the process of importing it. 1.定义: 模块(module):用来从逻辑(实现一个功能)上组织Python代码(变量.函数.类),本质就是*.p

  • 详解Python中import机制

    Python语言中import的使用很简单,直接使用import module_name语句导入即可.这里我主要写一下"import"的本质. Python官方定义: Python code in one module gains access to the code in another module by the process of importing it. 1.定义: 模块(module):用来从逻辑(实现一个功能)上组织Python代码(变量.函数.类),本质就是*.py文

  • python的广播机制详解

    目录 为什么会有广播机制 在矩阵或向量相关运算中的广播机制 1.一般的运算 2.一个矩阵一个向量的情况 3.两个向量 4.矩阵乘法的广播机制 总结 为什么会有广播机制 python语言在设计的时候,就就考虑到用于两个运算的矩阵或向量维度不匹配的问题.例如,我们有矩阵A,让矩阵每个元素都加1,直接使用A+1,就可以完成目的.这其中就用到了python的广播机制,所以在很多python的第三方库中,都支持广播机制,例如Numpy.pytorch. 在矩阵或向量相关运算中的广播机制 1.一般的运算 假

  • python中random模块详解

    Python中的random模块用于生成随机数,它提供了很多函数.常用函数总结如下: 1. random.random() 用于生成一个0到1的随机浮点数: 0 <= n < 1.0 2. random.seed(n) 用于设定种子值,其中的n可以是任意数字.random.random() 生成随机数时,每一次生成的数都是随机的.但是,使用 random.seed(n) 设定好种子之后,在先调用seed(n)时,使用 random() 生成的随机数将会是同一个. 3. random.unifo

  • Python中BeautifulSoup模块详解

    目录 前言 安装库 导入库 解析文档示例 提取数据示例 CSS选择器 实例小项目 总结 前言 BeautifulSoup是主要以解析web网页的Python模块,它会提供一些强大的解释器,以解析网页,然后提供一些函数,从页面中提取所需要的数据,目前是Python爬虫中最常用的模块之一. 安装库 在使用前需要安装库,这里建议安装bs4,也就是第四版本,因为根据官方文档第三版的已经停止更新.同时安装lxml解释器 pip3 install bs4 pip3 install lxml 导入库 from

  • python中random随机函数详解

    目录 一.random基础 二.实数分布 2.1 对称分布 2.2 指数分布 2.3 Beta 分布 2.4 Gamma 分布 2.5 高斯分布 2.6 对数正态分布 2.7 正态分布 2.8 冯·米塞斯分布 2.9 帕累托分布 2.10 威布尔分布 总结 加载相关库 import random import seaborn as sns import matplotlib.pyplot as plt # 解决中文不显示的问题 from pylab import mpl mpl.rcParams

  • Python中reduce函数详解

    目录 1 reduce用法 2 reduce与for循环性能对比 reduce函数原本在python2中也是个内置函数,不过在python3中被移到functools模块中. reduce函数先从列表(或序列)中取出2个元素执行指定函数,并将输出结果与第3个元素传入函数,输出结果再与第4个元素传入函数,…,以此类推,直到列表每个元素都取完. 1 reduce用法 对列表元素求和,如果不用reduce,我们一般常用的方法是for循环: def sum_func(arr):     if len(a

  • Python中字符串切片详解

    目录 1.没有步长的简单切片 2.有步长的切片方式 在python中,我们定义好一个字符串,如下所示. 在python中定义个字符串然后把它赋值给一个变量.我们可以通过下标访问单个的字符,跟所有的语言一样,下标从0开始.这个时候呢,我们可以通过切片的方式来截取出我们定义的字符串的一部分.使用切片的时候我们有两种方式:没有步长的简单切片和有步长的切片方式 1.没有步长的简单切片 语法格式是这样的: 首先定义一格字符串,比如叫s,然后给它赋值 截取字符串中的一部分,我们用的语法是 s[ start:

  • 关于Python中的闭包详解

    目录 1.闭包的概念 2.实现一个闭包 3.在闭包中外函数把临时变量绑定给内函数 4.闭包中内函数修改外函数局部变量 5.注意: 6.练习: 总结 1.闭包的概念 请大家跟我理解一下,如果在一个函数的内部定义了另一个函数,外部的我们叫他外函数,内部的我们叫他内函数.闭包: 在一个外函数中定义了一个内函数,内函数里运用了外函数的临时变量,并且外函数的返回值是内函数的引用.这样就构成了一个闭包.一般情况下,在我们认知当中,如果一个函数结束,函数的内部所有东西都会释放掉,还给内存,局部变量都会消失.但

随机推荐